题目内容

设数列{an}满足a1 = 3,an+1 = 2an2n+1+3nn≥1。
(1)求数列{an}的通项公式;
(2)求数列{an}的前n项之和Sn
(1)an=2n-1·(n2-n)+3n
(2)Sn= - (n-2)·2n+1+(n-1)·n·2n-4= - (n-2)·2n+1+(n-1)·n·2n-4
(1) an= 2an-1+(n-1)·2n+3n-1
=2[2an-2+(n-2)·2n-1+3n-2]+(n-1)·2n+3n-1
=22an-2+[(n-2)+(n-1)]·2n+(2·3n-2+3n-1)
=22[2an-3+(n-3)·2n-2+3n-3]+[(n-2)+(n-1)]·2n+(2·3n-2+3n-1)
=23an-3+[(n-3)+(n-2)+(n-1)]·2n+(22·3n-3+2·3n-2+3n-1)
=……
=2 n-1a1+[1+2+3+…+(n-1)]·2n+(2n-2·3+2n-3·32+…+3n-1)
=2n-1·3+·2n+2n-2·3·
=2n-1·(n2-n+3)+2n-1·3[()n-1-1]
=2n-1·(n2-n)+3n
(2)设数列{bn},其中bn =2n-1·(n2-n),Mn 为其前n项和,则Sn= Mn+3n
Mn =0+1·2·21+2·3·22+3·4·23+…+(n-1)·n·2n-1
2Mn = 1·2·22+2·3·23+…+(n-1)·n·2n
相减得 - Mn = 1·2·2+2·2·22+3·2·23+…+2·(n-1)·2n-1- (n-1)n·2n
=1·22+2·23+3·24+…+(n-1)·2n- (n-1)n·2n
-2 Mn = 1·23+2·24+3·25+…+(n-1)·2n+1- (n-1)·n·2n+1
相减得 Mn = 1·22+23+24+…+2n- (n-1)·2 n+1+(n-1)n·2n
= (2-n)·2 n+1+(n-1)·n·2n-4,
Sn = Mn+3+32+…+3n
= - (n-2)·2n+1+(n-1)·n·2n-4。
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网