题目内容
18、某工厂生产甲、乙两种产品,每种产品都是经过第一道和第二道工序加工而成,两道工序的加工结果相互独立,每道工序的加工结果均有A、B两个等级,对每种产品,两道工序的加工结果都为A级时,产品为一等品,其余均为二等品
(1)已知甲、乙两种产品每一道工序的加工结果为A级的概率如表一所示,分别求生产的甲、乙产品为一等品的概率P甲、P乙;
(2)已知一件产品的利润如表二所示,用ξ、η分别表示一件甲、乙产品的利润,在(1)的条件下,分别求甲、乙两种产品利润的分布列及数学期望.
(1)已知甲、乙两种产品每一道工序的加工结果为A级的概率如表一所示,分别求生产的甲、乙产品为一等品的概率P甲、P乙;
(2)已知一件产品的利润如表二所示,用ξ、η分别表示一件甲、乙产品的利润,在(1)的条件下,分别求甲、乙两种产品利润的分布列及数学期望.
分析:(1)每种产品都是经过第一和第二工序加工而成,两道工序的加工结果相互独立,应用相互独立事件同时发生的概率公式可以得到
(2)由题意得到两个变量的取值,做出对应事件的概率,写出分布列,求出期望.
(2)由题意得到两个变量的取值,做出对应事件的概率,写出分布列,求出期望.
解答:解:(1)∵每种产品都是经过第一和第二工序加工而成,
两道工序的加工结果相互独立,
∴应用相互独立事件同时发生的概率公式可以得到
P甲=0.8×0.85=0.68,
P乙=0.75×0.8=0.6.
(2)由题意知ξ的取值是2.5,5
η的取值是1.5,,2.5,
∴随机变量ξ、η的分布列如下:
P(ξ=2.5)=0.32
P(ξ=5)=0.68
P(η=2.5)=0.6
P(η=1.5)=0.4
∴Eξ=5×0.68+2.5×0.32=4.2,
Eη=2.5×0.6+1.5×0.4=2.1
两道工序的加工结果相互独立,
∴应用相互独立事件同时发生的概率公式可以得到
P甲=0.8×0.85=0.68,
P乙=0.75×0.8=0.6.
(2)由题意知ξ的取值是2.5,5
η的取值是1.5,,2.5,
∴随机变量ξ、η的分布列如下:
P(ξ=2.5)=0.32
P(ξ=5)=0.68
P(η=2.5)=0.6
P(η=1.5)=0.4
∴Eξ=5×0.68+2.5×0.32=4.2,
Eη=2.5×0.6+1.5×0.4=2.1
点评:考查运用概率知识解决实际问题的能力,相互独立事件是指两事件发生的概率互不影响,而对立事件是指同一次试验中,不会同时发生的事件,遇到求用至少来表述的事件的概率时,往往先求它的对立事件的概率.
练习册系列答案
相关题目