ÌâÄ¿ÄÚÈÝ
4£®Ô²CµÄ¼«×ø±ê·½³ÌΪ$¦Ñ=2\sqrt{2}cos£¨¦È+\frac{3}{4}¦Ð£©$£¬¼«×ø±êϵµÄ¼«µãÓëÖ±½Ç×ø±êϵµÄÔµãÖغϣ¬¼«ÖáÓëxÖáµÄ·Ç¸º°ëÖáÖغϣ¬ÇÒ³¤¶Èµ¥Î»Ïàͬ£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=-1-\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£®£¨1£©ÇóCµÄÖ±½Ç×ø±ê·½³Ì¼°Ô²Ðĵļ«×ø±ê
£¨2£©lÓëC½»ÓÚA£¬BÁ½µã£¬Çó|AB|
·ÖÎö £¨1£©ÓÉÁ½½ÇºÍÓë²îµÄÓàÏÒº¯Êý¼°¦Ñ2=x2+y2£¬¦Ñcos¦È=x£¬¦Ñsin¦È=y£¬ÄÜÇó³öCµÄÖ±½Ç×ø±ê·½³ÌºÍÔ²ÐĵÄÖ±½Ç×ø±ê£¬ÓÉ´ËÄÜÇó³öÔ²Ðĵļ«×ø±ê£®
£¨2£©ÏÈÇó³öÖ±ÏßlµÄÖ±½Ç×ø±ê·½³ÌºÍÔ²ÐÄC£¨-1£¬-1£©µ½Ö±ÏßlµÄ¾àÀëd£¬ÓÉ´ËÀûÓù´¹É¶¨ÀíÄÜÇó³ö|AB|£®
½â´ð ½â£º£¨1£©¡ßÔ²CµÄ¼«×ø±ê·½³ÌΪ$¦Ñ=2\sqrt{2}cos£¨¦È+\frac{3}{4}¦Ð£©$
¡à¦Ñ=$2\sqrt{2}£¨-\frac{{\sqrt{2}}}{2}cos¦È-\frac{{\sqrt{2}}}{2}sin¦È£©$=-2cos¦È-2sin¦È£¬
¡à¦Ñ2=-2¦Ñcos¦È-2¦Ñsin¦È£¬
ÓɦÑ2=x2+y2£¬¦Ñcos¦È=x£¬¦Ñsin¦È=y£¬
µÃµ½CµÄÖ±½Ç×ø±ê·½³ÌΪx2+y2=-2x-2y£¬¼´£¨x+1£©2+£¨y+1£©2=2
¡ßÔ²ÐÄ£¨-1£¬-1£©£¬
¡à$¦Ñ=\sqrt{£¨-1£©^{2}+£¨-1£©^{2}}$=$\sqrt{2}$£¬¦È=$\frac{5¦Ð}{4}$£¬¡àÔ²Ðĵļ«×ø±êΪ$£¨\sqrt{2}£¬\frac{5¦Ð}{4}£©$
£¨2£©¡ßÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=-1-\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£¬
ÏûÈ¥²ÎÊýµÃµ½Ö±ÏßlµÄÖ±½Ç×ø±ê·½³ÌΪx+y+1=0£¬
Ô²ÐÄC£¨-1£¬-1£©µ½Ö±ÏßlµÄ¾àÀ룺d=$\frac{|-1-1+1|}{\sqrt{1+1}}$=$\frac{\sqrt{2}}{2}$£¬
¡ß$d=\frac{{\sqrt{2}}}{2}$£¬r=$\sqrt{2}$£¬lÓëC½»ÓÚA£¬BÁ½µã£¬
¡à$|{AB}|=2\sqrt{2-\frac{1}{2}}=\sqrt{6}$£®
µãÆÀ ±¾Ì⿼ԲµÄÖ±½Ç×ø±ê·½³ÌºÍÔ²Ðĵļ«×ø±êµÄÇ󷨣¬¿¼²éÖ±ÏßÓëÔ²ÏཻµÄÏཻÏÒµÄÇ󷨣¬ÊÇ»ù´¡Ì⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÔ²µÄÐÔÖÊ¡¢¼«×ø±êºÍÖ±½Ç×ø±êת»¯¹«Ê½µÄºÏÀíÔËÓã®
A£® | $\frac{85}{128}$ | B£® | $\frac{21}{64}$ | C£® | $\frac{63}{128}$ | D£® | $\frac{35}{64}$ |
A£® | 8143 | B£® | 8152 | C£® | 8146 | D£® | 8149 |
A£® | $2\sqrt{5}-3$ | B£® | $3\sqrt{5}-2\sqrt{2}$ | C£® | $3\sqrt{2}+2$ | D£® | $2\sqrt{5}+\sqrt{2}$ |
A£® | -3 | B£® | $\frac{1}{2}$ | C£® | $\frac{3}{2}$ | D£® | 3 |