ÌâÄ¿ÄÚÈÝ

4£®Ô²CµÄ¼«×ø±ê·½³ÌΪ$¦Ñ=2\sqrt{2}cos£¨¦È+\frac{3}{4}¦Ð£©$£¬¼«×ø±êϵµÄ¼«µãÓëÖ±½Ç×ø±êϵµÄÔ­µãÖغϣ¬¼«ÖáÓëxÖáµÄ·Ç¸º°ëÖáÖغϣ¬ÇÒ³¤¶Èµ¥Î»Ïàͬ£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=-1-\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£®
£¨1£©ÇóCµÄÖ±½Ç×ø±ê·½³Ì¼°Ô²Ðĵļ«×ø±ê
£¨2£©lÓëC½»ÓÚA£¬BÁ½µã£¬Çó|AB|

·ÖÎö £¨1£©ÓÉÁ½½ÇºÍÓë²îµÄÓàÏÒº¯Êý¼°¦Ñ2=x2+y2£¬¦Ñcos¦È=x£¬¦Ñsin¦È=y£¬ÄÜÇó³öCµÄÖ±½Ç×ø±ê·½³ÌºÍÔ²ÐĵÄÖ±½Ç×ø±ê£¬ÓÉ´ËÄÜÇó³öÔ²Ðĵļ«×ø±ê£®
£¨2£©ÏÈÇó³öÖ±ÏßlµÄÖ±½Ç×ø±ê·½³ÌºÍÔ²ÐÄC£¨-1£¬-1£©µ½Ö±ÏßlµÄ¾àÀëd£¬ÓÉ´ËÀûÓù´¹É¶¨ÀíÄÜÇó³ö|AB|£®

½â´ð ½â£º£¨1£©¡ßÔ²CµÄ¼«×ø±ê·½³ÌΪ$¦Ñ=2\sqrt{2}cos£¨¦È+\frac{3}{4}¦Ð£©$
¡à¦Ñ=$2\sqrt{2}£¨-\frac{{\sqrt{2}}}{2}cos¦È-\frac{{\sqrt{2}}}{2}sin¦È£©$=-2cos¦È-2sin¦È£¬
¡à¦Ñ2=-2¦Ñcos¦È-2¦Ñsin¦È£¬
ÓɦÑ2=x2+y2£¬¦Ñcos¦È=x£¬¦Ñsin¦È=y£¬
µÃµ½CµÄÖ±½Ç×ø±ê·½³ÌΪx2+y2=-2x-2y£¬¼´£¨x+1£©2+£¨y+1£©2=2
¡ßÔ²ÐÄ£¨-1£¬-1£©£¬
¡à$¦Ñ=\sqrt{£¨-1£©^{2}+£¨-1£©^{2}}$=$\sqrt{2}$£¬¦È=$\frac{5¦Ð}{4}$£¬¡àÔ²Ðĵļ«×ø±êΪ$£¨\sqrt{2}£¬\frac{5¦Ð}{4}£©$
£¨2£©¡ßÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=-1-\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$£¨tΪ²ÎÊý£©£¬
ÏûÈ¥²ÎÊýµÃµ½Ö±ÏßlµÄÖ±½Ç×ø±ê·½³ÌΪx+y+1=0£¬
Ô²ÐÄC£¨-1£¬-1£©µ½Ö±ÏßlµÄ¾àÀ룺d=$\frac{|-1-1+1|}{\sqrt{1+1}}$=$\frac{\sqrt{2}}{2}$£¬
¡ß$d=\frac{{\sqrt{2}}}{2}$£¬r=$\sqrt{2}$£¬lÓëC½»ÓÚA£¬BÁ½µã£¬
¡à$|{AB}|=2\sqrt{2-\frac{1}{2}}=\sqrt{6}$£®

µãÆÀ ±¾Ì⿼ԲµÄÖ±½Ç×ø±ê·½³ÌºÍÔ²Ðĵļ«×ø±êµÄÇ󷨣¬¿¼²éÖ±ÏßÓëÔ²ÏཻµÄÏཻÏÒµÄÇ󷨣¬ÊÇ»ù´¡Ì⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÔ²µÄÐÔÖÊ¡¢¼«×ø±êºÍÖ±½Ç×ø±êת»¯¹«Ê½µÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø