题目内容
已知(
+2x)n的展开式中前三项的二项式系数的和等于37,求展式中二项式系数最大的项的系数.
1 |
4 |
由题意可得
+
+
=37,(3 分)
化简得1+n+
n(n-1)=37(5分),解得n=8.(8分)
所以,展式中二项式系数最大的项为第五项,由 T5=
(2x)4=
x5,
可得二项式系数的最大的项的系数为
.(12分)
C | 0n |
C | 1n |
C | 2n |
化简得1+n+
1 |
2 |
所以,展式中二项式系数最大的项为第五项,由 T5=
C | 48 |
1 |
44 |
35 |
16 |
可得二项式系数的最大的项的系数为
35 |
28 |

练习册系列答案
相关题目