题目内容

已知函数f(x)=ax-1-lnx(a∈R).
(Ⅰ)讨论函数f(x)在定义域内的极值点的个数;
(Ⅱ)若函数f(x)在x=1处取得极值,对?x∈(0,+∞),f(x)≥bx-2恒成立,求实数b的取值范围;
(Ⅲ)当0<x<y<e2且x≠e时,试比较
y
x
1-lny
1-lnx
的大小.
函数f(x)的定义域为(0,+∞).f′(x)=a-
1
x

(Ⅰ)当a≤0时,f′(x)<0在(0,+∞)上恒成立,函数在(0,+∞)单调递减,
∴在(0,+∞)上没有极值点;
当a>0时,由f′(x)>0得x>
1
a
,f′(x)<0得x<
1
a
.f′(x)=0得x=
1
a

∴在(0,
1
a
)上递减,在(
1
a
,+∞)上递增,即在x=
1
a
处有极小值.
∴当a≤0时在(0,+∞)上没有极值点,
当a>0时,在(0,+∞)上有一个极值点.(3分)
(Ⅱ)∵函数在x=
1
a
处取得极值,∴a=1,
f(x)=x-1-lnx,
∵f(x)≥bx-2,移项得(1-b)x>lnx-1,再将b分离得出,b<1-
lnx-1
x
,令g(x)=1-
lnx-1
x

则令g′(x)=
lnx-2
x2
,可知在(0,e2)上g′(x)<0,在(e2,+∞)上g′(x)>0,
∴g(x)在x=e2处取得极小值,也就是最小值.此时g(e2)=1-
1
e2

所以b≤1-
1
e2

(Ⅲ)由(Ⅱ)g(x)=1-
lnx-1
x
在(0,e2)上为减函数.0<x<y<e2且x≠e时,
有g(x)>g(y),1-
lnx-1
x
1-
lny-1
y
,整理得
1-lnx
x
1-lny
y

当0<x<e时,1-lnx>0,由①得,
y
x
1-lny
1-lnx

当e<x<e2时,1-lnx<0,由①得
y
x
1-lny
1-lnx
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网