题目内容

【题目】已知函数为偶函数,且函数图象的两相邻对称轴间的距离为.

(1)求的值;

(2)函数的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数的图象,求的单调递减区间.

【答案】(1)(2)

【解析】试题分析:(1)由两相邻对称轴间的距离为可得半个周期为.进而求出,由偶函数可得,由三角函数恒等变形可得.代入自变量即得的值;(2)先根据图像变换得到的解析式.再根据余弦函数性质求的单调递减区间.

试题解析: 解:(1)∵为偶函数,

∴对恒成立,∴.

即:

又∵,故.

由题意得,所以

,∴

(2)将的图象向右平移个单位后,得到的图象,再将所得图象横坐标伸长到原来的4倍,纵坐标不变,得到的图象.

.

时,单调递减,

因此的单调递减区间为.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网