题目内容
(本小题满分12分)张师傅驾车从公司开往火车站,途径4个交通岗,这4个交通岗将公司到火车站分成5个时段,每个时段的驾车时间都是3分钟,如果遇到红灯要停留1分钟。假设他在各交通岗遇到红灯是相互独立的,并且概率都是
(1)求张师傅此行程时间不小于16分钟的概率;
(2)记张师傅此行程所需时间为Y分钟,求Y的分布列和均值。
(1)求张师傅此行程时间不小于16分钟的概率;
(2)记张师傅此行程所需时间为Y分钟,求Y的分布列和均值。
解:
(Ⅰ)如果不遇到红灯,全程需要15分钟,否则至少需要16分钟.
张师傅此行程时间不小于16分钟的概率
P=1-(1-)4=. …4分
(Ⅱ)设此行程遇到红灯的次数为X,则X~B(4,),
P(X=k)=C()k()4-k,k=0,1,2,3,4.
依题意,Y=15+X,则Y的分布列为
Y的均值E(Y)=E(X+15)=E(X)+15=4×+15=. …12分
(Ⅰ)如果不遇到红灯,全程需要15分钟,否则至少需要16分钟.
张师傅此行程时间不小于16分钟的概率
P=1-(1-)4=. …4分
(Ⅱ)设此行程遇到红灯的次数为X,则X~B(4,),
P(X=k)=C()k()4-k,k=0,1,2,3,4.
依题意,Y=15+X,则Y的分布列为
Y | 15 | 16 | 17 | 18 | 19 | |
P | …10分 |
本题考查对立事件的概率和二项分布问题,考查学生的阅读能力和分析能力,第一问采用对立事件的概率求解较为简单,第二问分析得到事件为二项分布是解题的关键。
练习册系列答案
相关题目