搜索
题目内容
在数列
中,
,
,则
等于( )
A.
B.
C.
D.
试题答案
相关练习册答案
B
试题分析:因为
,所以
,
是等比数列
首项
+2=4,公比q=2
∴
等于
,故选B。
点评:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理。简言之,演绎推理是由一般到特殊的推理。演绎推理也称为逻辑推理。
练习册系列答案
假期作业寒假成长乐园中国少年儿童出版社系列答案
优加学案中考真题详解汇编系列答案
同行课课100分过关作业系列答案
举一反三全能训练系列答案
快乐的假期生活寒假作业哈尔滨出版社系列答案
寒假作业陕西人民教育出版社系列答案
活力假期期末寒假衔接系列答案
新锐图书复习计划期末寒假衔接系列答案
高考导航系列丛书假期作业寒假系列答案
寒假作业教育科学出版社系列答案
相关题目
数列
满足
(1)证明:数列
是等差数列; (2)求数列
的通项公式
;
(3)设
,求数列
的前
项和
。
(本小题满分12分)已知数列
为等差数列,且
(1)求数列
的通项公式;
(2)证明
(本题满分12分)已知数列
的首项
,
,
….
(Ⅰ)证明:数列
是等比数列;
(Ⅱ)求数列
的前
项和
.
①
是数列
的前
项和,若
,则数列
是等差数列
②若
,则
③已知函数
,若存在
,使得
成立,则
④在
中,
分别是角A、B、C的对边,若
则
为等腰直角三角形
其中正确的有
(填上所有正确命题的序号)
(本小题满分12分) 已知数列
为等差数列,且
,
.
(1) 求数列
的通项公式; (2) 令
,求证:数列
是等比数列.
(3)令
,求数列
的前
项和
.
设
是等差数列{an}的前n项和,
,则
的值为( )
A.
B.
C.
D.
等比数列
的前三项为
,
,
,则
设
是等差数列
的前
项和,且
,则
=
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总