ÌâÄ¿ÄÚÈÝ
£¨2012•ºç¿ÚÇøÈýÄ££©ÒÑÖªÊýÁÐ{an}Âú×ãa1=2£¬an+1=2(1+
)2an£®
£¨1£©Áîbn=
£¬ÇóÊýÁÐ{bn}ºÍ{an}µÄͨÏʽ£»
£¨2£©Éècn=(An2+Bn+C)•2n£¬ÊÔÍƶÏÊÇ·ñ´æÔÚ³£ÊýA£¬B£¬C£¬Ê¹¶ÔÒ»ÇÐn¡ÊN*¶¼ÓÐan=cn+1-cn³ÉÁ¢£¿Èô´æÔÚ£¬Çó³öA£¬B£¬CµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£»
£¨3£©¶Ô£¨2£©ÖÐÊýÁÐ{cn}£¬Éèdn=
£¬Çó{dn}µÄ×îСÏîµÄÖµ£®
1 |
n |
£¨1£©Áîbn=
an |
n2 |
£¨2£©Éècn=(An2+Bn+C)•2n£¬ÊÔÍƶÏÊÇ·ñ´æÔÚ³£ÊýA£¬B£¬C£¬Ê¹¶ÔÒ»ÇÐn¡ÊN*¶¼ÓÐan=cn+1-cn³ÉÁ¢£¿Èô´æÔÚ£¬Çó³öA£¬B£¬CµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£»
£¨3£©¶Ô£¨2£©ÖÐÊýÁÐ{cn}£¬Éèdn=
an |
cn |
·ÖÎö£º£¨1£©ÓÉÌõ¼þ£¬¿ÉµÃ
=2•
£¬´Ó¶ø¿ÉµÃ{bn}Êǹ«±ÈΪ2µÄµÈ±ÈÊýÁУ¬ÓÉ´Ë¿ÉÇóÊýÁÐ{bn}ºÍ{an}µÄͨÏʽ£»
£¨2£©¸ù¾Ýcn=(An2+Bn+C)•2n£¬×÷²î£¬¸ù¾Ýan=cn+1-cnºã³ÉÁ¢£¬¿ÉµÃAn2+£¨4A+B£©n+2A+2B+C=n2ºã³ÉÁ¢£¬ÓÉ´Ë¿ÉÇóA£¬B£¬CµÄÖµ£»
£¨3£©ÓÉdn=
=
£¬Áît=
¡Ê(0£¬1]£¬ÀûÓÃÅä·½·¨£¬¼´¿ÉÇóµÃ½áÂÛ£®
an+1 |
(n+1)2 |
an |
n2 |
£¨2£©¸ù¾Ýcn=(An2+Bn+C)•2n£¬×÷²î£¬¸ù¾Ýan=cn+1-cnºã³ÉÁ¢£¬¿ÉµÃAn2+£¨4A+B£©n+2A+2B+C=n2ºã³ÉÁ¢£¬ÓÉ´Ë¿ÉÇóA£¬B£¬CµÄÖµ£»
£¨3£©ÓÉdn=
n2 |
n2-4n+6 |
1 | ||||
|
1 |
n |
½â´ð£º½â£º£¨1£©ÓÉÒÑÖªµÃ
=2•
£¬¡à{bn}Êǹ«±ÈΪ2µÄµÈ±ÈÊýÁУ¬
¡ßb1=2£¬¡àbn=2•2n-1=2n
ÓÉbn=
=2•2n-1=2n£¬µÃan=2n•n2
£¨2£©¡ßcn=(An2+Bn+C)•2n£¬
¡àcn+1-cn=[A(n+1)2+B(n+1)+C]•2n+1-(An2+Bn+C)•2n=[An2+£¨4A+B£©n+2A+2B+C]•2n
Èôan=cn+1-cnºã³ÉÁ¢£¬ÔòAn2+£¨4A+B£©n+2A+2B+C=n2ºã³ÉÁ¢£¬
¡à
£¬¡àA=1£¬B=-4£¬C=6
¹Ê´æÔÚ³£ÊýA=1£¬B=-4£¬C=6Âú×ãÌõ¼þ
£¨3£©dn=
=
£¬Áît=
¡Ê(0£¬1]
Ôò
-
+1=6t2-4t+1=6(t-
)2+
¡ßt¡Ê£¨0£¬1]£¬¡àt=1ʱ£¬
-
+1=6t2-4t+1µÄ×î´óֵΪ3
¡à{dn}µÄ×îСÏîµÄֵΪ
an+1 |
(n+1)2 |
an |
n2 |
¡ßb1=2£¬¡àbn=2•2n-1=2n
ÓÉbn=
an |
n2 |
£¨2£©¡ßcn=(An2+Bn+C)•2n£¬
¡àcn+1-cn=[A(n+1)2+B(n+1)+C]•2n+1-(An2+Bn+C)•2n=[An2+£¨4A+B£©n+2A+2B+C]•2n
Èôan=cn+1-cnºã³ÉÁ¢£¬ÔòAn2+£¨4A+B£©n+2A+2B+C=n2ºã³ÉÁ¢£¬
¡à
|
¹Ê´æÔÚ³£ÊýA=1£¬B=-4£¬C=6Âú×ãÌõ¼þ
£¨3£©dn=
n2 |
n2-4n+6 |
1 | ||||
|
1 |
n |
Ôò
6 |
n2 |
4 |
n |
1 |
3 |
1 |
3 |
¡ßt¡Ê£¨0£¬1]£¬¡àt=1ʱ£¬
6 |
n2 |
4 |
n |
¡à{dn}µÄ×îСÏîµÄֵΪ
1 |
3 |
µãÆÀ£º±¾Ì⿼²éµÈ±ÈÊýÁеÄÖ¤Ã÷£¬¿¼²éºãµÈʽ£¬¿¼²éÇóº¯ÊýµÄ×îÖµ£¬ÕýÈ·ÀûÓÃÊýÁÐͨÏîÊǹؼü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿