题目内容

14.已知$\overrightarrow m=(2cosx,1)$,$\overrightarrow n=(cosx,sin2x+a)$,$f(x)=\overrightarrow m•\overrightarrow n$.
(Ⅰ)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)当$x∈[0,\frac{3π}{8}]$时,f(x)的最大值为$\sqrt{2}$,且在此范围内,关于x的方程f(x)=k恰有2个解,确定a的值,并求k的范围.

分析 (1)运用数量积的坐标计算公式,辅助角公式化简函数式,再求最小正周期和单调区间;
(2)根据自变量的范围得出函数的最值,求出a,再结合函数图象求k的范围.

解答 解:(1)f(x)=2cos2x+sin2x+a
=cos2x+sin2x+a+1=$\sqrt{2}$sin(2x+$\frac{π}{4}$)+a+1,
该函数的最小正周期为:π,
令2x+$\frac{π}{4}$∈[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$],解得x∈[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$];
所以,f(x)的单调增区间为[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$](k∈Z);
(2)当x∈[0,$\frac{3π}{8}$]时,2x+$\frac{π}{4}$∈[$\frac{π}{4}$,π],
此时,sin(2x+$\frac{π}{4}$)∈[0,1],
所以,f(x)max=$\sqrt{2}$+a+1=$\sqrt{2}$,解得a=-1,
因此,f(x)=$\sqrt{2}$sin(2x+$\frac{π}{4}$),
要使f(x)=k在x∈[0,$\frac{3π}{8}$]内恰有两解,
结合正弦函数图象知,k∈[f(0),f($\frac{π}{8}$)),即k∈[1,$\sqrt{2}$),
故实数k的取值范围为[1,$\sqrt{2}$).

点评 本题主要考查了向量的数量积,三角函数恒等变换,三角函数的图象与性质,以及运用函数图象解决根的个数问题,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网