题目内容
6.函数f(x)=sin(x+10°)+cos(x-20°)的最大值为$\sqrt{3}$.分析 由三角函数公式化简可得f(x)=$\sqrt{3}$sin(x+40°),可得最值.
解答 解:化简可得f(x)=sin(x+10°)+cos(x+10°-30°)
=sin(x+10°)+cos(x+10°)cos30°+sin(x+10°)sin30°
=sin(x+10°)+$\frac{\sqrt{3}}{2}$cos(x+10°)+$\frac{1}{2}$sin(x+10°)
=$\frac{3}{2}$sin(x+10°)+$\frac{\sqrt{3}}{2}$cos(x+10°)
=$\sqrt{3}$sin(x+10°+30°)=$\sqrt{3}$sin(x+40°)
∴函数的最大值为$\sqrt{3}$
故答案为:$\sqrt{3}$.
点评 本题考查三角函数的最值,属基础题.
练习册系列答案
相关题目
1.函数f(x)=$\sqrt{3}$cos4x+sin4x(x∈R)的递减区间为( )
A. | $[-\frac{5π}{24}+\frac{1}{2}kπ,\frac{π}{24}+\frac{1}{2}kπ](k∈Z)$ | B. | [$\frac{π}{24}+\frac{1}{2}kπ$,$\frac{7π}{24}+\frac{1}{2}kπ$](k∈Z | ||
C. | [-$\frac{π}{6}$+$\frac{1}{2}$Kπ,$\frac{π}{12}+\frac{1}{2}kπ$](k∈Z) | D. | [$\frac{π}{12}+\frac{1}{2}kπ$,$\frac{π}{3}$+$\frac{1}{2}$kπ](k∈Z) |
16.如图,设A,B两点在河的两岸,一测量者在点A所在的同侧河岸边选定一点C,测出AC的距离为100m,∠ACB=45°,∠CAB=105°后,就可以计算出A,B两点的距离为( )
A. | 100$\sqrt{3}$ m | B. | 100$\sqrt{2}$ m | C. | 50$\sqrt{2}$ m | D. | 25$\sqrt{2}$ m |