题目内容

(2007•河东区一模)△ABC的内角满足sinA+cosA>0,tanA-sinA<0,则A的取值范围是(  )
分析:△ABC中,由tanA-sinA<0,可求得A∈(
π
2
,π),再由sinA+cosA>0,即可求得A的取值范围.
解答:解:∵△ABC中,tanA-sinA<0,
∴tanA<sinA,又sinA>0,
1-cosA
cosA
<0,
∴cosA<0或cosA>1(舍),
∴cosA<0,故A∈(
π
2
,π),A+
π
4
∈(
4
4
),
又sinA+cosA=
2
sin(A+
π
4
)>0,
∴A+
π
4
∈(
4
,π),
∴A∈(
π
2
4
),
故选B.
点评:本题考查三角函数值的符号,考查辅助角公式的应用,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网