题目内容
【题目】在平面直角坐标系中,已知曲线的参数方程为 (为参数,).
(1)当时,若曲线上存在两点关于点成中心对称,求直线的斜率;
(2)在以原点为极点,轴正半轴为极轴的极坐标系中,极坐标方程为的直线与曲线相交于两点,若,求实数的值.
【答案】(1);(2).
【解析】分析:(1)将参数方程消去参数得到曲线的普通方程为,由曲线上存在两点关于点成中心对称可得,求得,于是得.(2)将曲线C的参数方程消去参数可得,根据圆的弦长公式可得,即为所求.
详解:(1)当时,曲线的参数方程为(为参数),
消去参数得,
∴圆心的坐标为.
∵曲线上存在两点关于点成中心对称,
∴,
又,
∴直线的斜率.
(2)由 (为参数,)消去参数得曲线的普通方程为,
∴圆心的坐标为,半径为.
又直线的极坐标方程可化为,
故其直角坐标方程为,
又,
∴,
解得.
∴实数的值为.
【题目】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:
交付金额(元) 支付方式 | (0,1000] | (1000,2000] | 大于2000 |
仅使用A | 18人 | 9人 | 3人 |
仅使用B | 10人 | 14人 | 1人 |
(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;
(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;
(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.
【题目】今年的西部决赛勇士和火箭共进行了七场比赛,经历了残酷的“抢七”比赛,两队的当家球星库里和杜兰特七场比赛的每场比赛的得分如下表:
第一场 | 第二场 | 第三场 | 第四场 | 第五场 | 第六场 | 第七场 | |
库里 | 26 | 28 | 24 | 22 | 31 | 29 | 36 |
杜兰特 | 26 | 29 | 33 | 26 | 40 | 29 | 27 |
(1)绘制两人得分的茎叶图;
(2)分析并比较两位球星的七场比赛的平均得分及得分的稳定程度.
【题目】为了解春季昼夜温差大小与某种子发芽多少之间的关系,现在从4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下表格:
日期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
温差x/℃ | 10 | 11 | 13 | 12 | 8 |
发芽数y/颗 | 23 | 25 | 30 | 26 | 16 |
(1)从这5天中任选2天,记发芽的种子数分别为,求事件“均不小于25”的概率;
(2) 若由线性回归方程得到的估计数据与4月份所选5天的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的. 请根据4月7日,4月15日与4月21日这三天的数据,求出关于的线性回归方程,并判定所得的线性回归方程是否可靠?
参考公式: ,
参考数据: