题目内容
设等差数列{an},{bn}的前n项和分别为Sn,Tn,若对任意自然数n都有=,则+的值为 .
【解析】∵{an},{bn}为等差数列,
∴+=+===.
∵====,∴=.
【方法技巧】巧解等差数列前n项和的比值问题
关于等差数列前n项和的比值问题,一般可采用前n项和与中间项的关系,尤其是项数为奇数时Sn=na中,也可利用首项与公差的关系求解.另外,熟记以下结论对解题会有很大帮助:若数列{an}与{bn}都是等差数列,且前n项和分别是Sn与Tn,则=.
练习册系列答案
相关题目
根据空气质量指数API(为整数)的不同,可将空气质量分级如下表:
API | 0~50 | 51~ 100 | 101~ 150 | 151~ 200 | 201~ 250 | 251~ 300 | >300 |
级 别 | Ⅰ | Ⅱ | Ⅲ1 | Ⅲ2 | Ⅳ1 | Ⅳ2 | Ⅴ |
状 况 | 优 | 良 | 轻微 污染 | 轻度 污染 | 中度 污染 | 中度 重污染 | 重度 污染 |
| |||||||
对某城市一年(365天)的空气质量进行监测,获得的API数据按照区间[0,50],(50,100],(100,150],(150,200],(200,250],(250,300]进行分组,得到频率分布直方图如图.
(1)求直方图中x的值.
(2)计算一年中空气质量分别为良和轻微污染的天数.
(3)求该城市某一周至少有2天的空气质量为良或轻微污染的概率.
(结果用分数表示.
已知57=78125,27=128,++++=,365=73×5).