题目内容
【题目】若10y1(2)=x02(3),求数字x,y的值及与此两数等值的十进制数.
【答案】x=y=1, 十进制数为11
【解析】试题分析:由二进制和三进制可知,∵10y1(2)=x02(3),∴1×23+0×22+y×2+1=x×32+0×3+2,将上式整理得9x-2y=7,由进位制的性质知x=1或2,y=0或1.将二进制和三进制都化成十进制,再根据两数相等及x,y的范围可得x,y的值.
试题解析:
∵10y1(2)=x02(3),
∴1×23+0×22+y×2+1=x×32+0×3+2,
将上式整理得9x-2y=7,
由进位制的性质知,
x∈{1,2},y∈{0,1},
当y=0时,x= (舍),
当y=1时,x=1.
∴x=y=1,已知数为102(3)=1011(2),
与它们相等的十进制数为
1×32+0×3+2=11.
练习册系列答案
相关题目