题目内容
7.设x,y满足约束条件:$\left\{\begin{array}{l}{y≤x+1}\\{y≤2}\\{2x+y≤7}\end{array}\right.$,则z=x+y的最大值与最小值分别为( )A. | $\frac{7}{2}$,3 | B. | 5,$\frac{7}{2}$ | C. | 5,3 | D. | 4,3 |
分析 作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最值.
解答 解:作出不等式组对应的平面区域如图:(阴影部分).
由z=x+y得y=-x+z,
平移直线y=-x+z,
由图象可知当直线y=-x+z经过点B时,直线y=-x+z的截距最大,
此时z最大.
由$\left\{\begin{array}{l}{y=x+1}\\{2x+y=7}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$,即B(2,3),
代入目标函数z=x+y得z=2+3=5.
即目标函数z=x+y的最大值为5.
当直线y=-x+z经过点A时,直线y=-x+z的截距最小,
此时z最小.
由$\left\{\begin{array}{l}{y=2}\\{y=x+1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,即A(1,2),
代入目标函数z=x+y得z=1+2=3.
即目标函数z=x+y的最小值为3.
故选:C
点评 本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.利用平移确定目标函数取得最优解的条件是解决本题的关键.
练习册系列答案
相关题目
18.在平面直角坐标系中,点P(-2,5)在( )
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
15.如果方程x2+(2m-3)x+m2-15=0的两个实根一个大于?2,另一个小于-2,那么实数m的取值范围是( )
A. | $(\sqrt{2},+∞)$ | B. | (-∞,-1) | C. | (5,+∞) | D. | (-1,5) |
16.设F1、F2分别是椭圆$\frac{x^2}{4}+\frac{y^2}{3}=1$的左,右焦点,P为椭圆上任一点,点M的坐标为(3,3),则|PM|-|PF2|的最小值为( )
A. | 5 | B. | $\sqrt{13}$ | C. | 1 | D. | $-\sqrt{13}$ |