题目内容
已知M={x|-2<x≤5},N={x|a+1≤x<2a2-1}.(1)若M⊆N,求实数a的取值范围;(2)若M?N,求实数a的取值范围.
分析:(1)若M⊆N,则应满,
解得a的取值范围即可;
(2)考虑N=∅时,a+1≥2a2-1和N≠∅两种情况.
|
(2)考虑N=∅时,a+1≥2a2-1和N≠∅两种情况.
解答:解:(1)若M⊆N,则应满,
解得a≤-3;
(2)若M?N,
①当N=∅时,a+1≥2a2-1,解得:
≤a≤
②当N≠∅时,满足
,解得{a|-
≤ a<
或
<a≤
}
故a的范围是{a|-
≤ a≤
}
|
(2)若M?N,
①当N=∅时,a+1≥2a2-1,解得:
1-
| ||
4 |
1+
| ||
4 |
②当N≠∅时,满足
|
3 |
1-
| ||
4 |
1+
| ||
4 |
3 |
故a的范围是{a|-
3 |
3 |
点评:本题考查了集合的包含关系,应用数轴法能将问题简单化.
练习册系列答案
相关题目