ÌâÄ¿ÄÚÈÝ
ÒÑÖªÇúÏßC1£º|x| |
a |
|y| |
b |
5 |
2
| ||
3 |
£¨¢ñ£©ÇóÍÖÔ²C2µÄ±ê×¼·½³Ì£»
£¨¢ò£©ÉèABÊǹýÍÖÔ²C2ÖÐÐĵÄÈÎÒâÏÒ£¬lÊÇÏ߶ÎABµÄ´¹Ö±Æ½·ÖÏߣ®MÊÇlÉÏÒìÓÚÍÖÔ²ÖÐÐĵĵ㣮
£¨1£©Èô|MO|=¦Ë|OA|£¨OΪ×ø±êԵ㣩£¬µ±µãAÔÚÍÖÔ²C2ÉÏÔ˶¯Ê±£¬ÇóµãMµÄ¹ì¼£·½³Ì£»
£¨2£©ÈôMÊÇlÓëÍÖÔ²C2µÄ½»µã£¬Çó¡÷AMBµÄÃæ»ýµÄ×îСֵ£®
·ÖÎö£º£¨¢ñ£©ÀûÓ÷â±ÕͼÐεÄÃæ»ýΪ4
£¬ÇúÏßC1µÄÄÚÇÐÔ²°ë¾¶Îª
£¬Çó³öa¡¢bµÄÖµ£¬´ý¶¨ÏµÊý·¨Ð´³öÍÖÔ²µÄ±ê×¼·½³Ì£®
£¨¢ò£©£¨1£©¼ÙÉèABËùÔÚµÄÖ±ÏßбÂÊ´æÔÚÇÒ²»ÎªÁ㣬ÉèABËùÔÚÖ±Ïß·½³ÌΪy=kx£¬´úÈëÍÖÔ²µÄ·½³Ì£¬ÓÃk±íʾ|OA|µÄƽ·½£¬
ÓÉ|MO|2=¦Ë2|OA|2£¬µÃµ½|MO|2£®ÔÙÓÃk±íʾֱÏßlµÄ·½³Ì£¬²¢½â³ök£¬°Ñ½â³öµÄk´úÈë|MO|2 µÄʽ×Ó£¬ÏûÈ¥kµÃµ½
MµÄ¹ì¼£·½³Ì£®µ±k=0»ò²»´æÔÚʱ£¬¹ì¼£·½³ÌÈÔ³ÉÁ¢£®
£¨2£©µ±k´æÔÚÇÒk¡Ù0ʱ£¬ÓÉ£¨1£©µÃ
=
£¬
=
£¬Í¬ÀíÇó³öµãMµÄºá×ø±êµÄƽ·½¡¢×Ý×ø±êµÄƽ·½£¬
¼ÆËã³öABµÄƽ·½£¬¼ÆËã³ö|MO|2£¬¿ÉÇó³öÈý½ÇÐÎÃæ»ýµÄƽ·½£¬Ê¹Óûù±¾²»µÈʽÇó³öÃæ»ýµÄ×îСֵ£¬ÔÙÇó³öµ±k²»´æÔÚ
¼°k=0ʱÈý½ÇÐεÄÃæ»ý£¬±È½Ï¿ÉµÃÃæ»ýµÄ×îСֵ£®
5 |
2
| ||
3 |
£¨¢ò£©£¨1£©¼ÙÉèABËùÔÚµÄÖ±ÏßбÂÊ´æÔÚÇÒ²»ÎªÁ㣬ÉèABËùÔÚÖ±Ïß·½³ÌΪy=kx£¬´úÈëÍÖÔ²µÄ·½³Ì£¬ÓÃk±íʾ|OA|µÄƽ·½£¬
ÓÉ|MO|2=¦Ë2|OA|2£¬µÃµ½|MO|2£®ÔÙÓÃk±íʾֱÏßlµÄ·½³Ì£¬²¢½â³ök£¬°Ñ½â³öµÄk´úÈë|MO|2 µÄʽ×Ó£¬ÏûÈ¥kµÃµ½
MµÄ¹ì¼£·½³Ì£®µ±k=0»ò²»´æÔÚʱ£¬¹ì¼£·½³ÌÈÔ³ÉÁ¢£®
£¨2£©µ±k´æÔÚÇÒk¡Ù0ʱ£¬ÓÉ£¨1£©µÃ
x | 2 A |
20 |
4+5k2 |
y | 2 A |
20k2 |
4+5k2 |
¼ÆËã³öABµÄƽ·½£¬¼ÆËã³ö|MO|2£¬¿ÉÇó³öÈý½ÇÐÎÃæ»ýµÄƽ·½£¬Ê¹Óûù±¾²»µÈʽÇó³öÃæ»ýµÄ×îСֵ£¬ÔÙÇó³öµ±k²»´æÔÚ
¼°k=0ʱÈý½ÇÐεÄÃæ»ý£¬±È½Ï¿ÉµÃÃæ»ýµÄ×îСֵ£®
½â´ð£º½â£º£¨¢ñ£©ÓÉÌâÒâµÃ
£¬ÓÖa£¾b£¾0£¬½âµÃ a2=5£¬b2=4£®
Òò´ËËùÇóÍÖÔ²µÄ±ê×¼·½³ÌΪ
+
=1£®
£¨¢ò£©£¨1£©¼ÙÉèABËùÔÚµÄÖ±ÏßбÂÊ´æÔÚÇÒ²»ÎªÁ㣬ÉèABËùÔÚÖ±Ïß·½³ÌΪy=kx£¨k¡Ù0£©£¬A£¨xA£¬yA£©£®
½â·½³Ì×é
µÃ
=
£¬
=
£¬
ËùÒÔ|OA|2=
+
=
+
=
£®
ÉèM£¨x£¬y£©£¬ÓÉÌâÒâÖª|MO|=¦Ë|OA|£¨¦Ë¡Ù0£©£¬
ËùÒÔ|MO|2=¦Ë2|OA|2£¬¼´x2+y2=¦Ë2
£¬
ÒòΪlÊÇABµÄ´¹Ö±Æ½·ÖÏߣ¬ËùÒÔÖ±ÏßlµÄ·½³ÌΪy=-
x£¬¼´k=-
£¬
Òò´Ëx2+y2=¦Ë2
=¦Ë2
£¬
ÓÖx2+y2¡Ù0£¬ËùÒÔ5x2+4y2=20¦Ë2£¬¹Ê
+
=¦Ë2£®
ÓÖµ±k=0»ò²»´æÔÚʱ£¬ÉÏʽÈÔÈ»³ÉÁ¢£®
×ÛÉÏËùÊö£¬MµÄ¹ì¼£·½³ÌΪ
+
=¦Ë2(¦Ë¡Ù0)£®
£¨2£©µ±k´æÔÚÇÒk¡Ù0ʱ£¬ÓÉ£¨1£©µÃ
=
£¬
=
£¬
ÓÉ
½âµÃ
=
£¬
=
£¬
ËùÒÔ|OA|2=
+
=
£¬|AB|2=4|OA|2=
£¬|OM|2=
£®
ÓÉÓÚ
=
|AB|2•|OM|2=
¡Á
¡Á
=
¡Ý
=
=(
)2£¬
µ±ÇÒ½öµ±4+5k2=5+4k2ʱµÈºÅ³ÉÁ¢£¬¼´k=¡À1ʱµÈºÅ³ÉÁ¢£¬
´Ëʱ¡÷AMBÃæ»ýµÄ×îСֵÊÇS¡÷AMB=
£®
µ±k=0£¬S¡÷AMB=
¡Á2
¡Á2=2
£¾
£®
µ±k²»´æÔÚʱ£¬S¡÷AMB=
¡Á
¡Á4=2
£¾
£®
×ÛÉÏËùÊö£¬¡÷AMBµÄÃæ»ýµÄ×îСֵΪ
£®
|
Òò´ËËùÇóÍÖÔ²µÄ±ê×¼·½³ÌΪ
x2 |
5 |
y2 |
4 |
£¨¢ò£©£¨1£©¼ÙÉèABËùÔÚµÄÖ±ÏßбÂÊ´æÔÚÇÒ²»ÎªÁ㣬ÉèABËùÔÚÖ±Ïß·½³ÌΪy=kx£¨k¡Ù0£©£¬A£¨xA£¬yA£©£®
½â·½³Ì×é
|
x | 2 A |
20 |
4+5k2 |
y | 2 A |
20k2 |
4+5k2 |
ËùÒÔ|OA|2=
x | 2 A |
y | 2 A |
20 |
4+5k2 |
20k2 |
4+5k2 |
20(1+k2) |
4+5k2 |
ÉèM£¨x£¬y£©£¬ÓÉÌâÒâÖª|MO|=¦Ë|OA|£¨¦Ë¡Ù0£©£¬
ËùÒÔ|MO|2=¦Ë2|OA|2£¬¼´x2+y2=¦Ë2
20(1+k2) |
4+5k2 |
ÒòΪlÊÇABµÄ´¹Ö±Æ½·ÖÏߣ¬ËùÒÔÖ±ÏßlµÄ·½³ÌΪy=-
1 |
k |
x |
y |
Òò´Ëx2+y2=¦Ë2
20(1+
| ||
4+5•
|
20(x2+y2) |
4y2+5x2 |
ÓÖx2+y2¡Ù0£¬ËùÒÔ5x2+4y2=20¦Ë2£¬¹Ê
x2 |
4 |
y2 |
5 |
ÓÖµ±k=0»ò²»´æÔÚʱ£¬ÉÏʽÈÔÈ»³ÉÁ¢£®
×ÛÉÏËùÊö£¬MµÄ¹ì¼£·½³ÌΪ
x2 |
4 |
y2 |
5 |
£¨2£©µ±k´æÔÚÇÒk¡Ù0ʱ£¬ÓÉ£¨1£©µÃ
x | 2 A |
20 |
4+5k2 |
y | 2 A |
20k2 |
4+5k2 |
ÓÉ
|
½âµÃ
x | 2 M |
20k2 |
5+4k2 |
y | 2 M |
20 |
5+4k2 |
ËùÒÔ|OA|2=
x | 2 A |
y | 2 A |
20(1+k2) |
4+5k2 |
80(1+k2) |
4+5k2 |
20(1+k2) |
5+4k2 |
ÓÉÓÚ
S | 2 ¡÷AMB |
1 |
4 |
1 |
4 |
80(1+k2) |
4+5k2 |
20(1+k2) |
5+4k2 |
400(1+k2)2 |
(4+5k2)(5+4k2) |
400(1+k2)2 | ||
(
|
1600(1+k2)2 |
81(1+k2)2 |
40 |
9 |
µ±ÇÒ½öµ±4+5k2=5+4k2ʱµÈºÅ³ÉÁ¢£¬¼´k=¡À1ʱµÈºÅ³ÉÁ¢£¬
´Ëʱ¡÷AMBÃæ»ýµÄ×îСֵÊÇS¡÷AMB=
40 |
9 |
µ±k=0£¬S¡÷AMB=
1 |
2 |
5 |
5 |
40 |
9 |
µ±k²»´æÔÚʱ£¬S¡÷AMB=
1 |
2 |
5 |
5 |
40 |
9 |
×ÛÉÏËùÊö£¬¡÷AMBµÄÃæ»ýµÄ×îСֵΪ
40 |
9 |
µãÆÀ£º±¾Ì⿼²éÓôý¶¨ÏµÊý·¨ÇóÍÖÔ²µÄ±ê×¼·½³Ì£¬²ÎÊý·¨Çó¹ì¼£·½³Ì£¬Ö±ÏßÓëԲ׶ÇúÏßµÄλÖùØϵµÄÓ¦Óã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿