题目内容
【题目】【2015高考广东,文19】设数列的前项和为,.已知,,,且当
时,.
(1)求的值;
(2)证明:为等比数列;
(3)求数列的通项公式.
【答案】(1);(2)证明见解析;(3).
【解析】
试题分析:(1)令可得的值;(2)先将()转化为,再利用等比数列的定义可证是等比数列;(3)先由(2)可得数列的通项公式,再将数列的通项公式转化为数列是等差数列,进而可得数列的通项公式.
试题解析:(1)当时,,即,解得:
(2)因为(),所以(),即(),因为,所以,因为,所以数列是以为首项,公比为的等比数列
(3)由(2)知:数列是以为首项,公比为的等比数列,所以
即,所以数列是以为首项,公差为的等差数列,所以,即,所以数列的通项公式是
练习册系列答案
相关题目