题目内容
已知函数f(x)=
+lnx-1,a∈R.
(1)若曲线y=f(x)在P(1,y0)处的切线平行于直线y=-x+1,求函数y=f(x)的单调区间;
(2)若a>0,且对x∈(0,2e]时,f(x)>0恒成立,求实数a的取值范围.
a |
x |
(1)若曲线y=f(x)在P(1,y0)处的切线平行于直线y=-x+1,求函数y=f(x)的单调区间;
(2)若a>0,且对x∈(0,2e]时,f(x)>0恒成立,求实数a的取值范围.
(1)直线y=-x+1斜率kAB=1,函数y=f(x)的导数f′(x)=-
+
(2)∵a>0,f(x)>0,对x∈(0,2e]恒成立,
即
+lnx-1>0对x∈(0,2e]恒成立
设a>x(1-lnx)=x-xlnx,x∈(0,2e],
g′(x)=1-lnx-1=-lnx
当0<x<1时,g′(x)>0,g(x)为增函数,
当1<x<2e,g′(x)<0,g(x)为减函数,
∴当x=1时,函数在(0,2e]上取得最大值,
∴g(x)≤g(1)=1
∴a的取值范围是(1,+∞)
a |
x2 |
1 |
x |
|
(2)∵a>0,f(x)>0,对x∈(0,2e]恒成立,
即
a |
x |
设a>x(1-lnx)=x-xlnx,x∈(0,2e],
g′(x)=1-lnx-1=-lnx
当0<x<1时,g′(x)>0,g(x)为增函数,
当1<x<2e,g′(x)<0,g(x)为减函数,
∴当x=1时,函数在(0,2e]上取得最大值,
∴g(x)≤g(1)=1
∴a的取值范围是(1,+∞)
练习册系列答案
相关题目
已知函数f(x)=a-
,若f(x)为奇函数,则a=( )
1 |
2x+1 |
A、
| ||
B、2 | ||
C、
| ||
D、3 |