题目内容
【题目】已知正三角形ABC的边长为2,AM是边BC上的高,沿AM将△ABM折起,使得二面角B﹣AM﹣C的大小为90°,此时点M到平面ABC的距离为 .
【答案】
【解析】解:∵正三角形ABC的边长为2,AM是边BC上的高,
沿AM将△ABM折起,使得二面角B﹣AM﹣C的大小为90°,
∴MA、MB、MC三条直线两两垂直,AM= ,BM=CM=1,
以M为原点,MB,MC,MA为x轴,y轴,z轴,建立空间直角坐标系,
则M(0,0,0),B(1,0,0),C(0,1,0),
A(0,0, ),
=(﹣1,0,0), =(﹣1,0, ), =(﹣1,1,0),
设平面ABC的法向量 =(x,y,z),
则 ,取x= ,得 =( , ,1),
∴点M到平面ABC的距离为:
d= = = .
所以答案是: .
练习册系列答案
相关题目
【题目】某同学用“五点法”画函数f(x)=Asin(ωx+φ)+B,A>0,ω>0,|φ|< 在某一个周期的图象时,列表并填入了部分数据,如表:
ωx+φ | 0 | π | 2π | ||
x | x1 | x2 | x3 | ||
Asin(ωx+φ)+B | 0 | 0 | ﹣ | 0 |
(1)请求出上表中的x1 , x2 , x3 , 并直接写出函数f(x)的解析式;
(2)若3sin2 ﹣ mf( ﹣ )≥m+2对任意x∈[0,2π]恒成立,求实数m的取值范围.