题目内容
17.若直线l:$x-\sqrt{3}y+3=0$与圆C:x2-2ax+y2=0有交点,则直线l的斜率为$\frac{{\sqrt{3}}}{3}$,实数a的取值范围为(-∞,-1]∪[3,+∞).分析 直线l:x-$\sqrt{3}$y+3=0,可化为y=$\frac{\sqrt{3}}{3}$x+$\sqrt{3}$,可得直线l的斜率;由直线与圆有交点,得到圆心到直线的距离小于等于圆的半径,利用点到直线的距离公式列出关于a的不等式可得到a的取值范围
解答 解:直线l:x-$\sqrt{3}$y+3=0,可化为y=$\frac{\sqrt{3}}{3}$x+$\sqrt{3}$,直线l的斜率为$\frac{\sqrt{3}}{3}$;
圆C:x2-2ax+y2=0的圆心坐标为(a,0),半径为|a|.
∵直线l:x-$\sqrt{3}$y+3=0与圆C:x2-2ax+y2=0有交点,
∴圆心(a,0)到直线的距离d≤r,
即$\frac{|a+3|}{\sqrt{1+3}}$≤|a|,
解得:a≤-1或a≥3.
故答案为:$\frac{\sqrt{3}}{3}$;(-∞,-1]∪[3,+∞).
点评 本题考查了直线与圆的位置关系,当直线与圆有交点,得到圆心到直线的距离小于等于圆的半径,熟练掌握此性质是解本题的关键.
练习册系列答案
相关题目
5.在数列{an}中,已知a1+a2+…+an=3n-1(n∈N*),则a12+a22+…+a102=( )
A. | (310-1)2 | B. | $\frac{{{9^{10}}-1}}{2}$ | C. | 910-1 | D. | $\frac{{{3^{10}}-1}}{4}$ |
9.关于直线a,b,c以及平面α,β,给出下列命题:
①若a∥α,b∥α,则a∥b
②若a∥α,b⊥α,则a⊥b
③若a?α,b?α,且c⊥a,c⊥b,则c⊥α
④若a⊥α,a∥β,则α⊥β.
其中错误的命题是( )
①若a∥α,b∥α,则a∥b
②若a∥α,b⊥α,则a⊥b
③若a?α,b?α,且c⊥a,c⊥b,则c⊥α
④若a⊥α,a∥β,则α⊥β.
其中错误的命题是( )
A. | ①② | B. | ②④ | C. | ①③ | D. | ②③ |
6.如果一个水平放置的图形的斜二测直观图是一个边长为a的正方形,那么原平面四边形的面积等于( )
A. | $\frac{{\sqrt{2}}}{4}a$2 | B. | $\frac{{\sqrt{2}}}{2}a$2 | C. | $2\sqrt{2}a$2 | D. | $\frac{{2\sqrt{2}}}{3}a$2 |