ÌâÄ¿ÄÚÈÝ
14£®ÒÑÖªÊýÁÐ{an}Âú×ãa1=$\frac{1}{2}$£¬an+1=an+$\frac{{{a}^{2}}_{n}}{{n}^{2}}$£¬ÊýÁÐ{bn}Âú×ãbn=$\frac{{a}_{n}}{n}$£¨¢ñ£©Ö¤Ã÷£ºbn¡Ê£¨0£¬1£©
£¨¢ò£©Ö¤Ã÷£º$\frac{\frac{1}{{b}_{n+1}}-1}{\frac{1}{{b}_{n}}-1}$=$\frac{{b}_{n}+n+1}{{b}_{n}+n}$
£¨¢ó£©Ö¤Ã÷£º¶ÔÈÎÒâÕýÕûÊýnÓÐan$£¼\frac{11}{6}$£®
·ÖÎö £¨¢ñ£©ÓÉÒÑÖªbn=$\frac{{a}_{n}}{n}$ºÍan+1=an+$\frac{{{a}^{2}}_{n}}{{n}^{2}}$£¬µÃµ½${b}_{n+1}=\frac{{b}_{n}£¨n+{b}_{n}£©}{£¨n+1£©}$£¬È»ºóÀûÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷0£¼bn£¼1£»
£¨¢ò£©°Ñ${b}_{n+1}=\frac{{b}_{n}£¨n+{b}_{n}£©}{n+1}$±äÐεÃ$\frac{1}{{b}_{n+1}}=\frac{n+1}{{b}_{n}£¨n+{b}_{n}£©}$£¬ÇóµÃ$\frac{1}{{b}_{n+1}}-1=\frac{n+1-{b}_{n}£¨n+{b}_{n}£©}{{b}_{n}£¨n+{b}_{n}£©}$£¬½øÒ»²½ÕûÀíµÃ´ð°¸£»
£¨¢ó£©ÓÉ£¨¢ò£©µÄ½áÂ۵õ½$\frac{1}{{b}_{n}}-1=£¨\frac{1}{{b}_{1}}-1£©•\frac{{b}_{1}+2}{{b}_{1}+1}•\frac{{b}_{2}+3}{{b}_{2}+2}¡\frac{{b}_{n-1}+n}{{b}_{n-1}+n-1}$£¬·ÅËõºóµÃµ½${b}_{n}¡Ü\frac{2}{n+3}$£¬È»ºó½áºÏ${a}_{n+1}={a}_{n}+{{b}_{n}}^{2}$Öª£¬µ±n¡Ý2ʱ£¬
${a}_{n}={a}_{1}+{{b}_{1}}^{2}+{{b}_{2}}^{2}+¡+{{b}_{n-1}}^{2}$$¡Ü{a}_{1}+4£¨\frac{1}{{4}^{2}}+\frac{1}{{5}^{2}}+¡+\frac{1}{£¨n+2£©^{2}}£©$£¬ÔÙ·Å´óÖ¤µÃ´ð°¸£®
½â´ð Ö¤Ã÷£º£¨¢ñ£©ÓÉbn=$\frac{{a}_{n}}{n}$£¬ÇÒan+1=an+$\frac{{{a}^{2}}_{n}}{{n}^{2}}$£¬µÃ$£¨n+1£©{b}_{n+1}=n{b}_{n}+{{b}_{n}}^{2}$£¬
¡à${b}_{n+1}=\frac{{b}_{n}£¨n+{b}_{n}£©}{£¨n+1£©}$£¬ÏÂÃæÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷£º0£¼bn£¼1£®
¢ÙÓÉa1=$\frac{1}{2}$¡Ê£¨0£¬1£©£¬Öª0£¼b1£¼1£¬
¢Ú¼ÙÉè0£¼bk£¼1£¬Ôò${b}_{k+1}=\frac{{b}_{k}£¨k+{b}_{k}£©}{£¨k+1£©}$£¬
¡ß0£¼bk£¼1£¬¡à$0£¼\frac{k+{b}_{k}}{k+1}£¼1$£¬Ôò0£¼bk+1£¼1£®
×ÛÉÏ£¬µ±n¡ÊN*ʱ£¬bn¡Ê£¨0£¬1£©£»
£¨¢ò£©ÓÉ${b}_{n+1}=\frac{{b}_{n}£¨n+{b}_{n}£©}{n+1}$£¬¿ÉµÃ£¬$\frac{1}{{b}_{n+1}}=\frac{n+1}{{b}_{n}£¨n+{b}_{n}£©}$£¬
¡à$\frac{1}{{b}_{n+1}}-1=\frac{n+1-{b}_{n}£¨n+{b}_{n}£©}{{b}_{n}£¨n+{b}_{n}£©}$=$\frac{£¨1-{b}_{n}£©£¨1+{b}_{n}+n£©}{{b}_{n}£¨n+{b}_{n}£©}$=$£¨\frac{1}{{b}_{n}}-1£©•\frac{{b}_{n}+n+1}{{b}_{n}+n}$£®
¹Ê$\frac{\frac{1}{{b}_{n+1}}-1}{\frac{1}{{b}_{n}}-1}=\frac{{b}_{n}+n+1}{{b}_{n}+n}$£»
£¨¢ó£©ÓÉ£¨¢ò£©µÃ£º$\frac{1}{{b}_{n}}-1=£¨\frac{1}{{b}_{1}}-1£©•\frac{{b}_{1}+2}{{b}_{1}+1}•\frac{{b}_{2}+3}{{b}_{2}+2}¡\frac{{b}_{n-1}+n}{{b}_{n-1}+n-1}$
$¡Ý£¨\frac{1}{{b}_{1}}-1£©•\frac{3}{2}•\frac{4}{3}¡\frac{n+1}{n}$£¬
¹Ê${b}_{n}¡Ü\frac{2}{n+3}$£®
ÓÉ${a}_{n+1}={a}_{n}+{{b}_{n}}^{2}$Öª£¬µ±n¡Ý2ʱ£¬
${a}_{n}={a}_{1}+{{b}_{1}}^{2}+{{b}_{2}}^{2}+¡+{{b}_{n-1}}^{2}$$¡Ü{a}_{1}+4£¨\frac{1}{{4}^{2}}+\frac{1}{{5}^{2}}+¡+\frac{1}{£¨n+2£©^{2}}£©$
$¡Ü{a}_{1}+4£¨\frac{1}{3¡Á4}+\frac{1}{4¡Á5}+¡+\frac{1}{£¨n+1£©£¨n+2£©}£©$=$\frac{1}{2}+4£¨\frac{1}{3}-\frac{1}{n+2}£©£¼\frac{11}{6}$£®
µãÆÀ ±¾Ì⿼²éÁËÊýÁеÝÍÆʽ£¬¿¼²éÁËÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷Óë×ÔÈ»ÊýÓйصÄÃüÌ⣬ѵÁ·ÁË·ÅËõ·¨Ö¤Ã÷ÊýÁв»µÈʽ£¬¶ÔµÝÍÆʽµÄÑ»·ÔËÓÃÊÇÖ¤Ã÷¸ÃÌâµÄ¹Ø¼ü£¬¿¼²éÁËѧÉúµÄÂ߼˼άÄÜÁ¦ºÍÁé»î´¦ÀíÎÊÌâµÄÄÜÁ¦£¬ÊÇѹÖáÌ⣮
A£® | $\frac{£¨¦Ð+2£©\sqrt{3}}{12}$ | B£® | $\frac{£¨¦Ð+1£©\sqrt{3}}{12}$ | C£® | $\frac{£¨2¦Ð+1£©\sqrt{3}}{12}$ | D£® | $\frac{£¨2¦Ð+3£©\sqrt{3}}{12}$ |