题目内容

15.已知数列{an}满足a1=3,an+1=an+p•3n(n∈N*,p为常数),a1,a2+6,a3成等差数列,则数列{an}的通项公式为${a}_{n}={3}^{n}$.

分析 数列{an}满足a1=3,an+1=an+p•3n(n∈N*,p为常数),可得a2=3+3p,a3=3+12p.由于a1,a2+6,a3成等差数列,可得2(a2+6)=a1+a3,解得p=2,由于an+1=an+2•3n,可得当n≥2时,an-an-1=2•3n-1.利用an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1即可得出.

解答 解:∵数列{an}满足a1=3,an+1=an+p•3n(n∈N*,p为常数),
∴a2=a1+p•3=3+3p,a3=a2+9p=3+12p.
∵a1,a2+6,a3成等差数列,
∴2(a2+6)=a1+a3
∴2(3+3p+6)=3+3+12p,
解得p=2,
∴an+1=an+2•3n
∴当n≥2时,an-an-1=2•3n-1
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=2(3n-1+3n-2+…+3)+3
=2×$\frac{3({3}^{n-1}-1)}{3-1}$+3
=3n
故答案为:${a}_{n}={3}^{n}$.

点评 本题考查了等比数列的通项公式及其前n项和公式、“累加求和”、递推关系的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网