题目内容

已知函数f(x)=
x+ax+1
,g(x)=(1-a)ex
(I)若曲线f(x)在点(1,f(1))处的切线与直线x-3y+1=0平行,求实数a的值;
(II)当0<a<1时,求函数F(x)=f(x)-g(x)在x∈(0,1]上的值域.
分析:(I)由f(x)=
x+a
x+1
,知f′(x)=
1-a
(x+1)2
,再曲线f(x)在点(1,f(1))处的切线与直线x-3y+1=0平行,能求出a的值.
(II)由F(x)=f(x)-g(x)=
x+a
x+1
-(1-a)ex,知F′(x)=
1-a
(x+1)2
-(1-a)ex=(1-a)[
1
(x+1)2
-ex],由0<a<1,x∈(0,1],推导出F(x)=f(x)-g(x)在x∈(0,1]上是减函数,由此能求出函数F(x)=f(x)-g(x)在x∈(0,1]上的值域.
解答:解:(I)∵f(x)=
x+a
x+1

∴f′(x)=
1-a
(x+1)2

∵曲线f(x)在点(1,f(1))处的切线与直线x-3y+1=0平行,
f(1)=
1-a
4
=
1
3
,解得a=-
1
3

(II)∵f(x)=
x+a
x+1
,g(x)=(1-a)ex
∴F(x)=f(x)-g(x)=
x+a
x+1
-(1-a)ex
∴F′(x)=
1-a
(x+1)2
-(1-a)ex=(1-a)[
1
(x+1)2
-ex],
∵0<a<1,x∈(0,1],
∴1-a>0,
1
(x+1)2
-ex<0,
∴F′(x)<0,
∴F(x)=f(x)-g(x)在x∈(0,1]上是减函数,
∵F(0)=a-1+a=2a-1,
F(1)=
1+a
2
-(1-a)e,
∴函数F(x)=f(x)-g(x)在x∈(0,1]上的值域为[
1+a
2
-(1-a)e,2a-1).
点评:本题考查导数的几何意义的应用,考查函数的值域的求法,解题时要认真审题,注意等价转化思想的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网