题目内容
1.随机变量ξ服从正态分布N(1,σ2),已知P(ξ<0)=0.3,则P(ξ<2)等于( )A. | 0.3 | B. | 0.6 | C. | 0.7 | D. | 0.4 |
分析 随机变量ξ服从正态分布N(1,σ2),得到曲线关于x=1对称,根据曲线的对称性得到小于0的和大于2的概率是相等的,从而做出大于2的数据的概率,根据概率的性质得到结果.
解答 解:随机变量ξ服从正态分布N(1,σ2),
∴曲线关于x=1对称,
∴P(ξ<0)=P(ξ>2)=0.3,
∴P(ξ<2)=1-0.3=0.7,
故选:C.
点评 本题考查正态分布曲线的特点及曲线所表示的意义,考查概率的性质,是一个基础题.
练习册系列答案
相关题目
12.下面的程序框图表示算法的运行结果是( )
A. | -3 | B. | -21 | C. | 3 | D. | 21 |
9.公差不为0的等差数列{an},其前23项和等于其前10项和,a8+ak=0,则正整数k=( )
A. | 24 | B. | 25 | C. | 26 | D. | 27 |
16.若复数$\frac{5}{2+i}$+ai(a∈R)的模为2,则a的值为( )
A. | 1 | B. | 2 | C. | -1 | D. | 不存在 |
10.公差为正数的等差数列{an}中,a2+a5=12,a3a4=35,则数列{$(\frac{1}{2})^{{a}_{n}}$}的前n项和为( )
A. | Sn=1-$\frac{1}{{2}^{n}}$ | B. | Sn=$\frac{2}{3}$-$\frac{2}{3•{4}^{n}}$ | C. | Sn=2n+1-2 | D. | Sn=$\frac{{4}^{n+1}-4}{3}$ |
9.M、N分别是椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右顶点,椭圆上异于M、N于点P满足kPM•kPN=-$\frac{1}{4}$,则椭圆的离心率为( )
A. | $\frac{{\sqrt{2}}}{2}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{1}{3}$ |