ÌâÄ¿ÄÚÈÝ
ÒÑÖªº¯Êýf£¨x£©=x3+ax+bÂú×ãf£¨0£©=f£¨1£©£¬ÓÖP£¨x1£¬f£¨x1£©£©£¬Q£¨x2£¬f£¨x2£©£©ÊÇÆäͼÏóÉϲ»Í¬Á½µã£®
£¨1£©ÇóÖ¤£ºÇúÏßy=f£¨x£©¹ØÓڵ㣨0£¬b£©ÖÐÐĶԳƣ®
£¨2£©Éè0¡Üx1£¼x2£¬Ö¤Ã÷´æÔÚx0¡Ê£¨x1£¬x2£©£¬Ê¹y=f£¨x£©ÔÚµãR£¨x0£¬f£¨x0£©£©´¦µÄÇÐÏßƽÐÐÓÚPQ£¬ÓÃx1£¬x2±íʾx0£¬²¢ËµÃ÷x0ÔÚÇø¼ä£¨x1£¬x2£©ÖеãMµÄ×ó²à»¹ÊÇÓҲ࣮
£¨3£©Éè0¡Üx1£¼x2¡Ü1£¬ÇóÖ¤£º|f£¨x1£©-f£¨x2£©|£¼1£®
£¨1£©ÇóÖ¤£ºÇúÏßy=f£¨x£©¹ØÓڵ㣨0£¬b£©ÖÐÐĶԳƣ®
£¨2£©Éè0¡Üx1£¼x2£¬Ö¤Ã÷´æÔÚx0¡Ê£¨x1£¬x2£©£¬Ê¹y=f£¨x£©ÔÚµãR£¨x0£¬f£¨x0£©£©´¦µÄÇÐÏßƽÐÐÓÚPQ£¬ÓÃx1£¬x2±íʾx0£¬²¢ËµÃ÷x0ÔÚÇø¼ä£¨x1£¬x2£©ÖеãMµÄ×ó²à»¹ÊÇÓҲ࣮
£¨3£©Éè0¡Üx1£¼x2¡Ü1£¬ÇóÖ¤£º|f£¨x1£©-f£¨x2£©|£¼1£®
·ÖÎö£º£¨1£©ÀûÓú¯Êýf£¨x£©=x3+ax+bÂú×ãf£¨0£©=f£¨1£©£¬¿ÉµÃb=1+a+b£¬¹Êa=-1£¬´Ó¶øf£¨x£©=x3-x+b£®É裨x0£¬y0£©ÊÇÇúÏßy=f£¨x£©ÉÏÈÎÒâÒ»µã£¬Ö¤Ã÷µã£¨x0£¬y0£©¹ØÓÚ£¨0£¬b£©µÄ¶Ô³Æµã£¨-x0£¬2b-y0£©Ò²ÔÚy=f£¨x£©ÉÏ£¬¼´¿É£»
£¨2£©y=f£¨x£©ÔÚRµã´¦µÄÇÐÏßбÂÊΪf¡ä£¨x0£©=3x02-1£¬ÓÖkPQ=
=x12+x1x2+x22-1£¬Áîf¡ä£¨x0£©=kPQ£¬µÃx0=
¡Ê£¨x1£¬x2£©£¬¹Ê¿ÉÖ¤x0£¾
£¬´Ó¶øx0ÔÚÇø¼ä£¨x1£¬x2£©ÖеãµÄÓҲࣻ
£¨3£©ÓÉ£¨2£©Öªµ±0¡Üx1£¼x2¡Ü1ʱ£¬´æÔÚx0¡Ê£¨x1£¬x2£©Ê¹PQµÄбÂÊk=f¡ä£¨x0£©=3x02-1£¬´Ó¶ø|k|£¼2£®½ø¶ø·ÖÀàÌÖÂÛ£¬ÀûÓþø¶ÔÖµ²»µÈʽµÄÐÔÖÊ£¬¼´¿ÉÖ¤µÃ£®
£¨2£©y=f£¨x£©ÔÚRµã´¦µÄÇÐÏßбÂÊΪf¡ä£¨x0£©=3x02-1£¬ÓÖkPQ=
f(x1)-f(x2) |
x1-x2 |
|
x1+x2 |
2 |
£¨3£©ÓÉ£¨2£©Öªµ±0¡Üx1£¼x2¡Ü1ʱ£¬´æÔÚx0¡Ê£¨x1£¬x2£©Ê¹PQµÄбÂÊk=f¡ä£¨x0£©=3x02-1£¬´Ó¶ø|k|£¼2£®½ø¶ø·ÖÀàÌÖÂÛ£¬ÀûÓþø¶ÔÖµ²»µÈʽµÄÐÔÖÊ£¬¼´¿ÉÖ¤µÃ£®
½â´ð£ºÖ¤Ã÷£º£¨1£©¡ßº¯Êýf£¨x£©=x3+ax+bÂú×ãf£¨0£©=f£¨1£©£¬
¡àb=1+a+b£¬¹Êa=-1£¬´Ó¶øf£¨x£©=x3-x+b£®£¨1·Ö£©
É裨x0£¬y0£©ÊÇÇúÏßy=f£¨x£©ÉÏÈÎÒâÒ»µã£¬Ôòy0=f£¨x0£©=x03-x0+b£¬´Ó¶ø2b-y0=-x03+x0+b=f£¨-x0£©£¬
¹Êµã£¨x0£¬y0£©¹ØÓÚ£¨0£¬b£©µÄ¶Ô³Æµã£¨-x0£¬2b-y0£©Ò²ÔÚy=f£¨x£©ÉÏ£¬
ÔÙÓÉ£¨x0£¬y0£©µÄÈÎÒâÐÔÖªy=f£¨x£©µÄͼÏó¹ØÓÚ£¨0£¬b£©ÖÐÐĶԳƣ®£¨4·Ö£©
£¨2£©y=f£¨x£©ÔÚRµã´¦µÄÇÐÏßбÂÊΪf¡ä£¨x0£©=3x02-1£¬
ÓÖkPQ=
=x12+x1x2+x22-1£¬
ÓÉ0¡Üx1£¼x2£¬Áîf¡ä£¨x0£©=kPQ£¬µÃx0=
¡Ê£¨x1£¬x2£©£¬
´Ó¶ø´æÔÚx0¡Ê£¨x1£¬x2£©£¬Ê¹y=f£¨x£©ÔÚR£¨x0£¬f£¨x0£©£©´¦µÄÇÐÏßƽÐÐÓÚÖ±ÏßPQ£®£¨7·Ö£©
ÓÖx12+x1x2+x22=
(x1+x2)2+
(x1-x2)2£¾
(x1+x2)2£¬
¹Êx0£¾
£¬¼´x0ÔÚÇø¼ä£¨x1£¬x2£©ÖеãµÄÓҲ࣮£¨9·Ö£©
£¨3£©ÓÉ£¨2£©Öªµ±0¡Üx1£¼x2¡Ü1ʱ£¬´æÔÚx0¡Ê£¨x1£¬x2£©Ê¹PQµÄбÂÊk=f¡ä£¨x0£©=3x02-1£¬
ÔÙÓÉx0¡Ê£¨x1£¬x2£©Öªx0¡Ê£¨0£¬1£©£¬´Ó¶ø3x02-1¡Ê£¨-1£¬2£©£¬ÓÚÊÇ|k|£¼2£®£¨11·Ö£©
´Ó¶ø¶ÔÈκÎs£¬t¡Ê[0£¬1]£¬s¡Ùt£¬ÓÐ|f£¨s£©-f£¨t£©|=k|s-t|£¼2|s-t|£®
µ±0¡Üx1£¼x2¡Ü1ÇÒ|x1-x2|¡Ü
ʱ£¬|f£¨x1£©-f£¨x2£©|£¼2|x1-x2|£¼1£»
µ±|x1-x2|£¾
ʱ£¬ÓÉ0¡Üx1£¼x2¡Ü1Öª0¡Üx1£¼
£¼x2¡Ü1£¬
´Ó¶ø|f£¨x1£©-f£¨x2£©|=|f£¨x1£©-f£¨0£©+f£¨1£©-f£¨x2£©|¡Ü|f£¨x1£©-f£¨0£©|+|f£¨1£©-f£¨x2£©|
£¼2£¨|x1-0|+|1-x2|£©£¼2£¨x1+1-x2£©=2-2£¨x2-x1£©£¼1£®£¨14·Ö£©
¡àb=1+a+b£¬¹Êa=-1£¬´Ó¶øf£¨x£©=x3-x+b£®£¨1·Ö£©
É裨x0£¬y0£©ÊÇÇúÏßy=f£¨x£©ÉÏÈÎÒâÒ»µã£¬Ôòy0=f£¨x0£©=x03-x0+b£¬´Ó¶ø2b-y0=-x03+x0+b=f£¨-x0£©£¬
¹Êµã£¨x0£¬y0£©¹ØÓÚ£¨0£¬b£©µÄ¶Ô³Æµã£¨-x0£¬2b-y0£©Ò²ÔÚy=f£¨x£©ÉÏ£¬
ÔÙÓÉ£¨x0£¬y0£©µÄÈÎÒâÐÔÖªy=f£¨x£©µÄͼÏó¹ØÓÚ£¨0£¬b£©ÖÐÐĶԳƣ®£¨4·Ö£©
£¨2£©y=f£¨x£©ÔÚRµã´¦µÄÇÐÏßбÂÊΪf¡ä£¨x0£©=3x02-1£¬
ÓÖkPQ=
f(x1)-f(x2) |
x1-x2 |
ÓÉ0¡Üx1£¼x2£¬Áîf¡ä£¨x0£©=kPQ£¬µÃx0=
|
´Ó¶ø´æÔÚx0¡Ê£¨x1£¬x2£©£¬Ê¹y=f£¨x£©ÔÚR£¨x0£¬f£¨x0£©£©´¦µÄÇÐÏßƽÐÐÓÚÖ±ÏßPQ£®£¨7·Ö£©
ÓÖx12+x1x2+x22=
3 |
4 |
1 |
4 |
3 |
4 |
¹Êx0£¾
x1+x2 |
2 |
£¨3£©ÓÉ£¨2£©Öªµ±0¡Üx1£¼x2¡Ü1ʱ£¬´æÔÚx0¡Ê£¨x1£¬x2£©Ê¹PQµÄбÂÊk=f¡ä£¨x0£©=3x02-1£¬
ÔÙÓÉx0¡Ê£¨x1£¬x2£©Öªx0¡Ê£¨0£¬1£©£¬´Ó¶ø3x02-1¡Ê£¨-1£¬2£©£¬ÓÚÊÇ|k|£¼2£®£¨11·Ö£©
´Ó¶ø¶ÔÈκÎs£¬t¡Ê[0£¬1]£¬s¡Ùt£¬ÓÐ|f£¨s£©-f£¨t£©|=k|s-t|£¼2|s-t|£®
µ±0¡Üx1£¼x2¡Ü1ÇÒ|x1-x2|¡Ü
1 |
2 |
µ±|x1-x2|£¾
1 |
2 |
1 |
2 |
´Ó¶ø|f£¨x1£©-f£¨x2£©|=|f£¨x1£©-f£¨0£©+f£¨1£©-f£¨x2£©|¡Ü|f£¨x1£©-f£¨0£©|+|f£¨1£©-f£¨x2£©|
£¼2£¨|x1-0|+|1-x2|£©£¼2£¨x1+1-x2£©=2-2£¨x2-x1£©£¼1£®£¨14·Ö£©
µãÆÀ£º±¾ÌâÒÔº¯ÊýΪÔØÌ壬¿¼²éº¯ÊýµÄ¶Ô³ÆÐÔ£¬¿¼²éÇÐÏßµÄбÂÊ£¬¿¼²é¾ø¶ÔÖµ²»µÈʽµÄÔËÓã¬×ÛºÏÐÔÇ¿£¬ÓÐÄѶȣ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑÖªº¯Êýf£¨x£©=Asin£¨¦Øx+¦Õ£©£¨x¡ÊR£¬A£¾0£¬¦Ø£¾0£¬|¦Õ|£¼
£©µÄ²¿·ÖͼÏóÈçͼËùʾ£¬Ôòf£¨x£©µÄ½âÎöʽÊÇ£¨¡¡¡¡£©
¦Ð |
2 |
A¡¢f(x)=2sin(¦Ðx+
| ||
B¡¢f(x)=2sin(2¦Ðx+
| ||
C¡¢f(x)=2sin(¦Ðx+
| ||
D¡¢f(x)=2sin(2¦Ðx+
|