题目内容
15.已知椭圆E:$\frac{x^2}{b^2}+\frac{y^2}{a^2}$=1(a>b>0),离心率为$\frac{{\sqrt{2}}}{2}$,且过点A(-1,0).(Ⅰ)求椭圆E的方程.
(Ⅱ)若椭圆E的任意两条互相垂直的切线相交于点P,证明:点P在一个定圆上.
分析 (Ⅰ)根据$e=\frac{c}{a}=\frac{{\sqrt{2}}}{2}$且b=1,则a=$\sqrt{2}$,c=1;
(Ⅱ)设P(x0,y0),分两类讨论:①当直线l的斜率存在且非零时,得出$x_0^2+y_0^2=3$;②当直线l的斜率不存在或斜率等于零时,P$(±1,±\sqrt{2})$也符合上述关系.
解答 解析:(Ⅰ)由已知$e=\frac{c}{a}=\frac{{\sqrt{2}}}{2}$,且椭圆的焦点在y轴上,
所以,b=1,则,a=$\sqrt{2}$,c=1,
所以椭圆E的方程为:${x^2}+\frac{y^2}{2}=1$;
(Ⅱ)设两切线的交点P(x0,y0),过交点P的直线l与椭圆${x^2}+\frac{y^2}{2}=1$相切,
①当直线l的斜率存在且非零时,x0≠±1.
设其斜率为k,则直线l:y=k(x-x0)+y0,联立方程$\left\{\begin{array}{l}{y=k(x-{x}_{0})+{y}_{0}}\\{x^2+\frac{y^2}{2}=1}\end{array}\right.$,
消y得:$(2+{k^2}){x^2}+2k({y_0}-k{x_0})x+{({y_0}-k{x_0})^2}-2=0$,
因为直线l与椭圆相切,△=0,
即$△={[2k({y_0}-k{x_0})]^2}-4(2+{k^2})[{(k{x_0}-{y_0})^2}-2=0$,
化简得,$(1-x_0^2){k^2}+2{x_0}{y_0}k+2-y_0^2=0$------(*)
因椭圆外一点所引的两条切线互相垂直,则k1k2=-1,
而k1,k2为方程(*)的两根,故$\frac{2-y_0^2}{1-x_0^2}=-1$,整理得:$x_0^2+y_0^2=3$;
②当直线l的斜率不存在或斜率等于零时,易求得P点的坐标为$(±1,±\sqrt{2})$,
显然,点P$(±1,±\sqrt{2})$也满足方程:$x_0^2+y_0^2=3$,
综合以上讨论得,对任意的两条相互垂直的切线,点P的坐标均满足方程x2+y2=3,
故点P在定圆x2+y2=3上.
点评 本题主要考查了椭圆标准方程的求法,直线与圆锥曲线的位置关系的判断,以及分类讨论的解题思想,属于中档题.
A. | 3 | B. | 2$\sqrt{2}$ | C. | 2$\sqrt{3}$ | D. | 3$\sqrt{3}$ |
A. | $2\sqrt{2}$ | B. | $2\sqrt{3}$ | C. | 12 | D. | $\sqrt{10}$ |
A. | 2 | B. | -2 | C. | ±2 | D. | 以上均不是 |