题目内容
已知F1、F2分别是椭圆
+
=1的左、右焦点,A是椭圆上一动点,圆C与F1A的延长线、F1F2的延长线以及线段AF2相切,若M(t,0)为一个切点,则( )
x2 |
4 |
y2 |
3 |
分析:由题意知,圆C是△AF1F2的旁切圆,点M是圆C与x轴的切点,设圆C与直线F1A的延长线、AF2分别相切于点P,Q,
则由切线的性质可知:AP=AQ,F2Q=F2M,F1P=F1M,由此能求出t的值.
则由切线的性质可知:AP=AQ,F2Q=F2M,F1P=F1M,由此能求出t的值.
解答:解:由题意知,圆C是△AF1F2的旁切圆,
点M是圆C与x轴的切点,
设圆C与直线F1A的延长线、AF2分别相切于点P,Q,
则由切线的性质可知:
AP=AQ,F2Q=F2M,F1P=F1M,
∴MF2=QF2=(AF1+AF2)-(AF1+AQ)
=2a-AF1-AP
=2a-F1P
=2a-F1M
∴MF1+MF2=2a,
∴t=a=2.
故选A.
点M是圆C与x轴的切点,
设圆C与直线F1A的延长线、AF2分别相切于点P,Q,
则由切线的性质可知:
AP=AQ,F2Q=F2M,F1P=F1M,
∴MF2=QF2=(AF1+AF2)-(AF1+AQ)
=2a-AF1-AP
=2a-F1P
=2a-F1M
∴MF1+MF2=2a,
∴t=a=2.
故选A.
点评:本题主要考查椭圆标准方程,简单几何性质,直线与椭圆的位置关系,圆的简单性质等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.
练习册系列答案
相关题目