题目内容

【题目】设{an}是由正数组成的等比数列,公比q=2,且a1a2a3…a30=230 , 那么a3a6a9…a30等于(
A.210
B.220
C.216
D.215

【答案】B
【解析】解:∵a1a2a3= a3=( 3 , a4a5a6= a6=( 3 , …,a28a29a30=( 3
∴a1a2a3…a30=( 33…( 3=( 3=230
又∵q=2,
∴a3a6a9a30=220
故选B.
由等比数列的通项公式,可得a1a2a3=( 3 , 同理a4a5a6=( 3 , …,a28a29a30=( 3 , 故原式a1a2a3…a30=( 3=230 , 将q=2代入,即可求出a3a6a9…a30的值.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网