题目内容

2.在三角形ABC中,角A,B,C的对边分别为a,b,c,且A-C=90°,a+c=$\sqrt{2}$b,求cosC.

分析 由A-C=90°,表示出A,进而表示出B,利用正弦定理化简已知等式,把表示出的A代入并利用两角和与差的余弦函数公式化简,求出cos(C+45°)=$\frac{1}{2}$,确定出C的度数,即可求出cosC的值.

解答 解:由A-C=90°,得A=C+90°,
∴B=π-(A+C)=90°-2C(0°<C<45°),
把a+c=$\sqrt{2}$b,利用正弦定理化简得:sinA+sinC=$\sqrt{2}$sinB,
∴sin(C+90°)+sinC=$\sqrt{2}$sin(90°-2C),
即cosC+sinC=$\sqrt{2}$coc2C=$\sqrt{2}$(cos2C-sin2C)=$\sqrt{2}$(cosC+sinC)(cosC-sinC),
∵cosC+sinC≠0,
∴cosC-sinC=$\sqrt{2}$cos(C+45°)=$\sqrt{2}$,即cos(C+45°)=$\frac{1}{2}$,
∴C+45°=60°,
∴C=15°,
则cosC=cos15°=cos(45°-30°)=$\frac{\sqrt{2}}{2}$×$\frac{\sqrt{3}}{2}$+$\frac{\sqrt{2}}{2}$×$\frac{1}{2}$=$\frac{\sqrt{6}+\sqrt{2}}{4}$.

点评 此题考查了余弦定理,正弦定理,两角和与差的余弦函数公式,熟练掌握定理及公式是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网