题目内容
(本小题12分)如图,四棱锥
中,
侧面
是边长为2的正三角形,且与底面垂直,底面
是
的菱形,
为
的中点.
(1)求
与底面
所成角的大小;
(2)求证:
平面
;
(3)求二面角
的余弦值.
![]()
【答案】
(1)取DC的中点O,由ΔPDC是正三角形,有PO⊥DC.
又∵平面PDC⊥底面ABCD,∴PO⊥平面ABCD于O.
连结OA,则OA是PA在底面上的射影.∴∠PAO就是PA与底面所成角.
∵∠ADC=60°,由已知ΔPCD和ΔACD是全等的正三角形,从而求得OA=OP=
.
∴∠PAO=45°.∴PA与底面ABCD可成角的大小为45°.
(2)由底面ABCD为菱形且∠ADC=60°,DC=2,DO=1,有OA⊥DC.
建立空间直角坐标系如图,则
,
.
由M为PB中点,∴
.
∴![]()
.
∴
,
.
∴PA⊥DM,PA⊥DC. ∴PA⊥平面DMC.
(3)
.令平面BMC的法向量
,
则
,从而x+z=0; ……①,
,从而
. ……②
由①、②,取x=−1,则
.
∴可取
.
由(2)知平面CDM的法向量可取
,
∴
. ∴所求二面角的余弦值为-
.
法二:(1)方法同上
(2)取
的中点
,连接
,由(Ⅰ)知,在菱形
中,由于
,则
,又
,则
,即
,
又在
中,中位线![]()
,
,则
,则四边形
为
,所以
,在
中,
,则
,故
而
,
则![]()
(3)由(2)知
,则
为二面角
的平面角,在![]()
中,易得![]()
,
,
故,所求二面角的余弦值为![]()
【解析】略
练习册系列答案
相关题目