题目内容
设Tn为数列{an}的前n项之积,满足Tn=1-an(n∈N*).(1)设
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223223563982293/SYS201311012232235639822018_ST/0.png)
(2)设Sn=T12+T22+…+Tn2求证:an+1-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223223563982293/SYS201311012232235639822018_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223223563982293/SYS201311012232235639822018_ST/2.png)
【答案】分析:(1)首先利用数列{an}的前n项积Tn与通项之间的关系分类讨论写出相邻项满足的关系式,然后两式作商,再利用
,利用作差法即可获得数列{bn}是等差数列.由此可以求的数列{bn}的通项公式,进而求得Tn然后求得数列{an}的通项公式;
(2)Sn=T12+T22+…+Tn2=
,再进行放缩可证.
解答:解:(1)∵Tn=1-an(n∈N*).
,∴
,∴![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223223563982293/SYS201311012232235639822018_DA/4.png)
∵
,∴bn-bn-1=1,∵Tn=1-an,∴
,∴
,∴数列{bn}是以2为首项,以1为公差的等差数列,∴bn=n+1,∴
,∴![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223223563982293/SYS201311012232235639822018_DA/9.png)
(2)Sn=T12+T22+…+Tn2=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223223563982293/SYS201311012232235639822018_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223223563982293/SYS201311012232235639822018_DA/11.png)
∴![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223223563982293/SYS201311012232235639822018_DA/12.png)
当n≥2时,=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223223563982293/SYS201311012232235639822018_DA/13.png)
当n=1时,![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223223563982293/SYS201311012232235639822018_DA/14.png)
∴Sn≤an-
,∴an+1-
<Sn≤an-
.
点评:本题考查的是数列与不等式的综合类问题.在解答的过程当中充分体现了构造思想、放缩法解决不等式的证问题.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223223563982293/SYS201311012232235639822018_DA/0.png)
(2)Sn=T12+T22+…+Tn2=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223223563982293/SYS201311012232235639822018_DA/1.png)
解答:解:(1)∵Tn=1-an(n∈N*).
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223223563982293/SYS201311012232235639822018_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223223563982293/SYS201311012232235639822018_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223223563982293/SYS201311012232235639822018_DA/4.png)
∵
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223223563982293/SYS201311012232235639822018_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223223563982293/SYS201311012232235639822018_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223223563982293/SYS201311012232235639822018_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223223563982293/SYS201311012232235639822018_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223223563982293/SYS201311012232235639822018_DA/9.png)
(2)Sn=T12+T22+…+Tn2=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223223563982293/SYS201311012232235639822018_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223223563982293/SYS201311012232235639822018_DA/11.png)
∴
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223223563982293/SYS201311012232235639822018_DA/12.png)
当n≥2时,=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223223563982293/SYS201311012232235639822018_DA/13.png)
当n=1时,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223223563982293/SYS201311012232235639822018_DA/14.png)
∴Sn≤an-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223223563982293/SYS201311012232235639822018_DA/15.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223223563982293/SYS201311012232235639822018_DA/16.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101223223563982293/SYS201311012232235639822018_DA/17.png)
点评:本题考查的是数列与不等式的综合类问题.在解答的过程当中充分体现了构造思想、放缩法解决不等式的证问题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目