题目内容
设Tn为数列{an}的前n项乘积,满足Tn=1-an(n∈N*)
(1)设bn=
,求证:数列{bn}是等差数列;
(2)设cn=2n•bn,求证数列{cn}的前n项和Sn;
(3)设An=
+
+…
,求证:an+1-
<An≤-
.
(1)设bn=
1 |
Tn |
(2)设cn=2n•bn,求证数列{cn}的前n项和Sn;
(3)设An=
T | e 1 |
T | e 2 |
T | e n |
1 |
2 |
1 |
4 |
分析:(1)由Tn=1-an,an=
,n≥2,知Tn=1-
,从而
-
=1,由此能证明数列{bn}是等差数列.
(2)由(1)知bn=2+(n-1)=n+1,从而cn=(n+1)•2n,故Sn=2•2+3•22+…+(n+1)•2n,利用错位相减法能求出数列{cn}的前n项和Sn.
(3)由Tn=
=
,知n≥2时,an=
=
,由a1=
,知an=
,n∈N* ,由此利用放缩法能够证明an+1-
<An≤-
.
Tn |
Tn-1 |
Tn |
Tn-1 |
1 |
Tn |
1 |
Tn-1 |
(2)由(1)知bn=2+(n-1)=n+1,从而cn=(n+1)•2n,故Sn=2•2+3•22+…+(n+1)•2n,利用错位相减法能求出数列{cn}的前n项和Sn.
(3)由Tn=
1 |
bn |
1 |
n+1 |
Tn |
Tn-1 |
n |
n+1 |
1 |
2 |
n |
n+1 |
1 |
2 |
1 |
4 |
解答:解:(1)∵Tn=1-an,an=
,n≥2,
∴Tn=1-
,从而
-
=1,(n≥2)
∴bn-bn-1=1,(n≥2)
∵T1=a1=1-a1,
∴a1=
,b1=
=
=2,
∴{bn}是以2为首项,1为公差的等差数列.
(2)由(1)知bn=2+(n-1)=n+1,从而cn=(n+1)•2n,
∴Sn=2•2+3•22+…+(n+1)•2n,
2Sn=2•22+3•23+…+n•2n+(n+1)•2n+1,
两式相减,得-Sn=4+(22+23+…+2n)-(n+1)•2n+1
=4+
-(n+1)•2n+1
=-n•2n+1,
∴Sn=n•2n+1.
(3)∵Tn=
=
,
∴n≥2时,an=
=
,
∵a1=
,∴an=
,n∈N* ,
An=T12+T22+…+Tn2
=
+
+…+
>
+
+…+
=
-
+
-
+…+
-
=
-
=an+1-
,
∴An>an+1-
,
又∵当n≥2时,An=T12+T22+…+Tn2
=
+
+…+
=
+
+…+
<
+
+
+…+
=
+
-
+
-
+…+
-
=
+
-
=an-
,
an+1-
<An≤-
.
Tn |
Tn-1 |
∴Tn=1-
Tn |
Tn-1 |
1 |
Tn |
1 |
Tn-1 |
∴bn-bn-1=1,(n≥2)
∵T1=a1=1-a1,
∴a1=
1 |
2 |
1 |
T1 |
1 |
a1 |
∴{bn}是以2为首项,1为公差的等差数列.
(2)由(1)知bn=2+(n-1)=n+1,从而cn=(n+1)•2n,
∴Sn=2•2+3•22+…+(n+1)•2n,
2Sn=2•22+3•23+…+n•2n+(n+1)•2n+1,
两式相减,得-Sn=4+(22+23+…+2n)-(n+1)•2n+1
=4+
4(1-2n-1) |
1-2 |
=-n•2n+1,
∴Sn=n•2n+1.
(3)∵Tn=
1 |
bn |
1 |
n+1 |
∴n≥2时,an=
Tn |
Tn-1 |
n |
n+1 |
∵a1=
1 |
2 |
n |
n+1 |
An=T12+T22+…+Tn2
=
1 |
22 |
1 |
32 |
1 |
(n+1)2 |
>
1 |
2×3 |
1 |
3×4 |
1 |
(n+1)(n+2) |
=
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
n+1 |
1 |
n+2 |
=
1 |
2 |
1 |
n+2 |
=an+1-
1 |
2 |
∴An>an+1-
1 |
2 |
又∵当n≥2时,An=T12+T22+…+Tn2
=
1 |
22 |
1 |
32 |
1 |
(n+1)2 |
=
1 |
22 |
1 |
32 |
1 |
(n+1)2 |
1 |
22 |
1 |
2×3 |
1 |
3×4 |
1 |
n(n+1) |
=
1 |
22 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
n |
1 |
n+1 |
=
1 |
4 |
1 |
2 |
1 |
n+1 |
1 |
4 |
an+1-
1 |
2 |
1 |
4 |
点评:本题考查等差数列的证明,考查前列的前n项和的求法,考查不等式的证明,解题时要认真审题,注意错位相减法和放缩法的合理运用.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目