题目内容
(本小题满分14分)已知定义在
上的函数
满足
,且对任意
有
.
(Ⅰ)判断
在
上的奇偶性,并加以证明.
(Ⅱ)令
,
,求数列
的通项公式.
(Ⅲ)设
为
的前
项和,若
对
恒成立,求
的最大值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230612833406.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230612848447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613051567.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613129626.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232306131451009.png)
(Ⅰ)判断
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230612848447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230612833406.png)
(Ⅱ)令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613207465.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613223711.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613254586.png)
(Ⅲ)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613269373.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613285814.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613301297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613316773.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613332523.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613363337.png)
(Ⅰ)奇函数。见解析;(Ⅱ)
; (Ⅲ)
的最大值为
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613379669.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613363337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613425291.png)
(1)先根据x,y取值的任意性,可令
得
, 然后再令x=0,可得
f(-y)=-f(y),从而可判定f(x)为奇函数.
(II)
满足
,则必有![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613223711.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613535615.png)
,否则若
则必有
,依此类推必有
,矛盾.据此可否定据此
,
从而得到
,
然后再根据![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232306136591430.png)
,可确定是
等比数列, 问题到此基本得以解决.
(III)在(2)的基础上,可知
, 从而可采用错位相减的方法求和.
(Ⅰ).
对任意
有
…………①
令
得
;………………………………………………1分
令
由①得
,
用
替换上式中的
有
………………………………………2分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613769203.png)
在
上为奇函数.………………………………………………3分
(Ⅱ).
满足
,则必有![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613223711.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613535615.png)
否则若
则必有
,依此类推必有
,矛盾
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613769203.png)
………………………………………………5分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613769203.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232306143611436.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232306143771001.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613769203.png)
,又![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230614439783.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613769203.png)
是
为首项,
为公比的等比数列,…………………………………7分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613769203.png)
………………………………………………8分
(Ⅲ).
………………………………………………9分
故
……………………………………②
………………………③
②
③得![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232306148921582.png)
………………………………………………11分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613769203.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230614954831.png)
………………………………………………12分
若
对
恒成立须
,解得
……………………13分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613769203.png)
的最大值为
. ………………………………………………14分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613441472.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613457481.png)
f(-y)=-f(y),从而可判定f(x)为奇函数.
(II)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613254586.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613503537.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613223711.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613535615.png)
,否则若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613550444.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613566395.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613597367.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613628429.png)
从而得到
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613644512.png)
然后再根据
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232306136591430.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613675929.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613254586.png)
(III)在(2)的基础上,可知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232306137221182.png)
(Ⅰ).
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613737235.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613129626.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232306131451009.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613769203.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613441472.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613457481.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613815367.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613831627.png)
用
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613847266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613862310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613893603.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613769203.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230612848447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230612833406.png)
(Ⅱ).
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613254586.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613503537.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613223711.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613535615.png)
否则若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613550444.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613566395.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613597367.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613769203.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613644512.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613769203.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232306143611436.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232306143771001.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613769203.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230614408838.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230614439783.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613769203.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613254586.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230614486206.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613425291.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613769203.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613379669.png)
(Ⅲ).
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232306137221182.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232306146111226.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232306146271621.png)
②
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230614642165.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232306148921582.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230614907673.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613769203.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230614954831.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230614970327.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613769203.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230615032773.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613332523.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230615063720.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230615079467.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613769203.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613363337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230613425291.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目