题目内容

如图,在三棱锥P-ABC中,△PAC,△ABC分别是以A、B为直角顶点的等腰直角三角形,AB=1.现给出三个条件:①PB=;②PB⊥BC;③平面PAB⊥平面ABC.试从中任意选取一个作为已知条件,并证明:PA⊥平面ABC;
见解析
(解法1)选取条件①,在等腰直角三角形ABC中,∵AB=1,∴BC=1,AC=.
又∵PA=AC,∴PA=.∴在△PAB中,AB=1,PA=.
又∵PB=,∴AB2+PA2=PB2.∴∠PAB=90°,即PA⊥AB.
又∵PA⊥AC,AB∩AC=A,AB,AC真包含于平面ABC,∴PA⊥平面ABC.
(解法2)选取条件②,
∵PB⊥BC,又AB⊥BC,且PB∩AB=B,∴BC⊥平面PAB.
∵PA真包含于平面PAB,∴BC⊥PA.
又∵PA⊥AC,且BC∩AC=C,∴PA⊥平面ABC.
(解法3)选取条件③,
若平面PAB⊥平面ABC,
∵平面PAB∩平面ABC=AB,BC真包含于平面ABC,BC⊥AB,∴BC⊥平面PAB.
∵PA真包含于平面PAB,∴BC⊥PA.∵PA⊥AC,且BC∩AC=C,∴PA⊥平面ABC.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网