题目内容
已知函数.
(Ⅰ)设{an}是正数组成的数列,前n项和为Sn,其中a1=3.若点(n∈N*)在函数y=f′(x)的图象上,求证:点(n,Sn)也在y=f′(x)的图象上;
(Ⅱ)求函数f(x)在区间(a-1,a)内的极值.
(Ⅰ)证明:因为所以′(x)=x2+2x,
由点在函数y=f′(x)的图象上,得,
即,又所以,
又因为1 ,所以数列是以3为首项,公差为2得等差数列。
所以,又因为′(n)=n2+2n,所以,
故点也在函数y=f′(x)的图象上.
(Ⅱ)解:,
由得.
当x变化时,的变化情况如下表:
x | (-∞,-2) | -2 | (-2,0) | 0 | (0,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | 极大值 | 极小值 |
注意到,从而
①当,此时无极小值;
②当的极小值为,此时无极大值;
③当既无极大值又无极小值.
练习册系列答案
相关题目