题目内容

14.已知$\left\{\begin{array}{l}{2x+y-2≥0}\\{x-2y+4≥0}\\{3x-y-3≤0}\end{array}\right.$,当x,y取何值时,x2+y2取得最大值,最小值?最大值,最小值各是多少?

分析 由题意作出其平面区域,x2+y2可看成阴影部分内的点到原点的距离的平方,从而解最值.

解答 解:由题意作出其平面区域,

x2+y2可看成阴影部分内的点到原点的距离的平方,由图可知,
当取点B时有最大值,
由y=3x-3与x=2y-4联立解得,
x=2,y=3;即B(2,3);
所以当x=2,y=3时,x2+y2的最大值为22+32=13,
原点到直线y=-2x+2的距离的平方是其最小值,
d=$\frac{2}{\sqrt{4+1}}=\frac{2\sqrt{5}}{5}$,
所以x2+y2最小值是$(\frac{2}{\sqrt{5}})^{2}=\frac{4}{5}$,由$\left\{\begin{array}{l}{y=-2x+2}\\{y=\frac{1}{2}x}\end{array}\right.$解得x=$\frac{4}{5}$,y=$\frac{2}{5}$,即x=$\frac{4}{5}$,y=$\frac{2}{5}$时,x2+y2的最小值为$\frac{4}{5}$.

点评 本题考查了简单线性规划,关键是作图要细致认真,利用目标函数的几何意义求最值;属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网