ÌâÄ¿ÄÚÈÝ
ÒÑÖªº¯Êýf£¨x£©=£¨x-1£©2£¬ÊýÁÐ{an}Êǹ«²îΪdµÄµÈ²îÊýÁУ¬ÊýÁÐ{bn}Êǹ«±ÈΪq£¨q¡ÊRÇÒq¡Ù1£©µÄµÈ±ÈÊýÁУ®Èôa1=f£¨d-1£©£¬a3=f£¨d+1£©£¬b1=f£¨q-1£©£¬b3=f£¨q+1£©
£¨1£©ÇóÊýÁÐ{an}£¬{bn}µÄͨÏʽ£»
£¨2£©ÉèÊýÁÐ{Cn}¶ÔÈÎÒâÕýÕûÊýn¾ùÓÐ
+
+¡+
=an+1³ÉÁ¢£¬Çó{Cn}µÄͨÏ
£¨3£©ÊԱȽÏ
Óë
µÄ´óС£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®
£¨1£©ÇóÊýÁÐ{an}£¬{bn}µÄͨÏʽ£»
£¨2£©ÉèÊýÁÐ{Cn}¶ÔÈÎÒâÕýÕûÊýn¾ùÓÐ
C1 |
b1 |
C2 |
b2 |
Cn |
bn |
£¨3£©ÊԱȽÏ
3bn-1 |
3bn+1 |
an+1 |
an+2 |
·ÖÎö£º£¨1£©Í¨¹ýÒÑÖªÌõ¼þÖ±½ÓÇóÊýÁÐ{an}£¬{bn}µÄͨÏʽ£»
£¨2£©Í¨¹ý
+
+¡+
=an+1£¬Áгön-1µÄ±í´ïʽ£¬×÷²î¼´¿ÉÇó{Cn}µÄͨÏʽ£»
£¨3£©·Ö±ð¼ÆËã
Óë
µÄ±í´ïʽ£¬Í¨¹ý¶þÏîʽ¶¨Àí£¬Ö¤Ã÷ÅжϵĽá¹û¼´¿É£®
£¨2£©Í¨¹ý
C1 |
b1 |
C2 |
b2 |
Cn |
bn |
£¨3£©·Ö±ð¼ÆËã
3bn-1 |
3bn+1 |
an+1 |
an+2 |
½â´ð£º½â£º£¨1£©¡ßÊýÁÐ{an}Êǹ«²îΪdµÄµÈ²îÊýÁÐa1=£¨d-2£©2£¬a3=d2
¡àa3-a1=4d-4=2d¡àd=2£¬a1=0¡àan=2n-2¡£¨2·Ö£©
ͬÀí£ºbn=3n-1¡£¨4·Ö£©
£¨2£©¡ß
+
+¡+
=an+1
¡à
+
+¡+
=an(n¡Ý2)
ÒÔÉÏÁ½Ê½Ïà¼õ£º
=an+1-an(n¡Ý2)
¡à
=2(n¡Ý2)⇒Cn=2bn(n¡Ý2)¡£¨6·Ö£©
¡àCn=2•3n-1£¨n¡Ý2£©£¬¾¼ìÑ飬n=1ÈÔÈ»³ÉÁ¢
¡àCn=2•3n-1¡£¨8·Ö£©
£¨3£©
=
£»
=
¡à
-
=
-
=
¡£¨9·Ö£©
µ±n=1ʱ£¬
=
µ±n¡Ý2ʱ£¬3n=£¨1+2£©n=Cn020+Cn121+¡+Cnn2n£¾2n+1
¡à
£¾
×ÛÉÏËùÊö£ºn=1ʱ£¬
=
£¬
n¡Ý2ʱ£¬
£¾
¡£¨12·Ö£©
¡àa3-a1=4d-4=2d¡àd=2£¬a1=0¡àan=2n-2¡£¨2·Ö£©
ͬÀí£ºbn=3n-1¡£¨4·Ö£©
£¨2£©¡ß
C1 |
b1 |
C2 |
b2 |
Cn |
bn |
¡à
C1 |
b1 |
C2 |
b2 |
Cn-1 |
bn-1 |
ÒÔÉÏÁ½Ê½Ïà¼õ£º
Cn |
bn |
¡à
Cn |
bn |
¡àCn=2•3n-1£¨n¡Ý2£©£¬¾¼ìÑ飬n=1ÈÔÈ»³ÉÁ¢
¡àCn=2•3n-1¡£¨8·Ö£©
£¨3£©
3bn-1 |
3bn+1 |
3n-1 |
3n+1 |
an+1 |
an+2 |
n |
n+1 |
¡à
3bn-1 |
3bn+1 |
an+1 |
an+2 |
3n-1 |
3n+1 |
n |
n+1 |
3n-2n-1 |
(3n+1)•(n+1) |
µ±n=1ʱ£¬
3bn-1 |
3bn+1 |
an+1 |
an+2 |
µ±n¡Ý2ʱ£¬3n=£¨1+2£©n=Cn020+Cn121+¡+Cnn2n£¾2n+1
¡à
3bn-1 |
3bn+1 |
an+1 |
an+2 |
×ÛÉÏËùÊö£ºn=1ʱ£¬
3bn-1 |
3bn+1 |
an+1 |
an+2 |
n¡Ý2ʱ£¬
3bn-1 |
3bn+1 |
an+1 |
an+2 |
µãÆÀ£º±¾Ì⿼²éÊýÁÐͨÏʽµÄÇ󷨣¬¶þÏîʽ¶¨ÀíµÄÓ¦Ó㬿¼²éѧÉú·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦£¬×ª»¯Ë¼ÏëµÄÓ¦Óã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑÖªº¯Êýf£¨x£©=x2-bxµÄͼÏóÔÚµãA£¨1£¬f£¨1£©£©´¦µÄÇÐÏßlÓëÖ±Ïß3x-y+2=0ƽÐУ¬ÈôÊýÁÐ{
}µÄÇ°nÏîºÍΪSn£¬ÔòS2010µÄֵΪ£¨¡¡¡¡£©
1 |
f(n) |
A¡¢
| ||
B¡¢
| ||
C¡¢
| ||
D¡¢
|