题目内容
(12分)已知函数在
处取得极值。
(1)讨论和
是函数
的极大值还是极小值;
(2)过点作曲线
的切线,求此切线方程。
【答案】
解得
。
所以,
是极大值;
是极小值。
(1)是极大值;
是极小值
(2)
【解析】解:⑴,依题意,
,即
|

∴。
令,得
。
若,则
,故
在
上是增函数,
在
上是增函数。
若,则
,故
在
上是减函数。
|


(2)设切点为,则点M的坐标满足
。 ……7分
因,故切线的方程为
注意到点A(0,16)在切线上,有
化简得,解得
。 ……10分
所以,切点为,切线方程为
。 ……共12分

练习册系列答案
相关题目