题目内容
如下图所示,在四面体P-ABC中,已知PA=BC=6,PC=AB=10,AC=8,PB=.F是线段PB上一点,,点E在线段AB上,且EF⊥PB.
(Ⅰ)证明:PB⊥平面CEF;
(Ⅱ)求二面角B-CE-F的大小.
答案:
解析:
解析:
(I)证明:∵ ∴△PAC是以∠PAC为直角的直角三角形,同理可证 △PAB是以∠PAB为直角的直角三角形,△PCB是以∠PCB为直角的直角三角形. 故PA⊥平面ABC 又∵ 而 故CF⊥PB,又已知EF⊥PB∴PB⊥平面CEF (II)由(I)知PB⊥CE,PA⊥平面ABC ∴AB是PB在平面ABC上的射影,故AB⊥CE 在平面PAB内,过F作FF1垂直AB交AB于F1,则FF1⊥平面ABC, EF1是EF在平面ABC上的射影,∴EF⊥EC 故∠FEB是二面角B-CE-F的平面角. 二面角B-CE-F的大小为 |
练习册系列答案
相关题目