题目内容

在平面直角坐标系中,动点P(x,y)到两条坐标轴的距离之和等于它到点(1,1)的距离,记点P的轨迹为曲线为W.
(Ⅰ)给出下列三个结论:
①曲线W关于原点对称;
②曲线W关于直线y=x对称;
③曲线W与x轴非负半轴,y轴非负半轴围成的封闭图形的面积小于
其中,所有正确结论的序号是   
(Ⅱ)曲线W上的点到原点距离的最小值为   
【答案】分析:根据动点P(x,y)到两条坐标轴的距离之和等于它到点(1,1)的距离,可得曲线方程,作出曲线的图象,即可得到结论.
解答:解:∵动点P(x,y)到两条坐标轴的距离之和等于它到点(1,1)的距离,
∴|x|+|y|=
∴|xy|+x+y-1=0
∴xy>0,(x+1)(y+1)=2或xy<0,(y-1)(1-x)=0
函数的图象如图所示
∴曲线W关于直线y=x对称;曲线W与x轴非负半轴,y轴非负半轴围成的封闭图形的面积小于
由y=x与(x+1)(y+1)=2联立可得x=-1,∴曲线W上的点到原点距离的最小值为=
故答案为:②③;
点评:本题考查轨迹方程,考查数形结合的数学思想,求出轨迹方程,正确作出曲线的图象是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网