题目内容
已知A={x|x2≥4},B={x|
≥0},C={x||x-3|<3},若U=R. (1)求B∩C; (2)求CU(A∪C).
6-x | 1+x |
分析:(1)先将A、B、C化简,然后根据交集的定义求解B∩C.注意正确求解相应的不等式,这是求解该题的关键.
(2)利用补集的定义,结合(1)问的求解,写出相应的集合,求出CU(A∪C)即可.
(2)利用补集的定义,结合(1)问的求解,写出相应的集合,求出CU(A∪C)即可.
解答:解:由x2≥4,得x≥2,或x≤-2,
∴A={x|x≥2,或x≤-2}.
又由不等式
≥0,得-1<x≤6,
∴B={x|-1<x≤6}.
又由|x-3|<3,得0<x<6,∴C={x|0<x<6}.
∴A={x|x≤-2或x≥2},B={-1<x≤6},C={x|0<x<6}-----(4分)
(1)B∩C={x|0<x<6}------------(8分)
(2)由于A∪C={x|x≤-2或x>0},
∴CU(A∪C)═{x|-2<x≤0}-------(12分)
∴A={x|x≥2,或x≤-2}.
又由不等式
6-x |
x+1 |
∴B={x|-1<x≤6}.
又由|x-3|<3,得0<x<6,∴C={x|0<x<6}.
∴A={x|x≤-2或x≥2},B={-1<x≤6},C={x|0<x<6}-----(4分)
(1)B∩C={x|0<x<6}------------(8分)
(2)由于A∪C={x|x≤-2或x>0},
∴CU(A∪C)═{x|-2<x≤0}-------(12分)
点评:本题考查一元二次不等式,简单的分式不等式,含绝对值的不等式的解法,考查集合交并运算的求解,考查学生数形结合思想的运用.
练习册系列答案
相关题目