题目内容
若平面中,,则“”是“”的( )
A. 充分不必要条件 B. 必要不充分条件
C. 充分必要条件 D. 既不充分也不必要条件
已知,是双曲线:,的左、右焦点,若直线与双曲线交于、两点,且四边形是矩形,则双曲线的离心率为( )
A. B. C. D.
宜昌一天中6时至14时的温度变化曲线近似满足函数(其中),6时至14时期间的温度变化曲线如图所示,它是上述函数的半个周期的图象,图中曲线对应的函数解析式是__________.
如图:区域A是正方形OABC(含边界),区域B是三角形ABC(含边界)。
(Ⅰ)向区域A随机抛掷一粒黄豆,求黄豆落在区域B的概率;
(Ⅱ)若x,y分别表示甲、乙两人各掷一次骰子所得的点数,求点(x,y)落在区域B的概率;
正方体的棱长为a,分别是棱的中点,以为底面作直三棱柱(侧棱与底面垂直的三棱柱叫直三棱柱),若此三棱柱另一底面的三个顶点也都在该正方体的表面上,则这个三棱柱的高为( )
A. a B. a
C. a D. a
双曲线的焦点坐标是( )
A. B.
C. D.
已知椭圆:与轴的正半轴相交于点,点为椭圆的焦点,且是边长为2的等边三角形,若直线与椭圆交于不同的两点.
(1)直线的斜率之积是否为定值?若是,请求出该定值;若不是,请说明理由;
(2)求的面积的最大值.
已知在等差数列中,,且是和的等比中项,则( )
A. 1 B. 1或13 C. 13 D. 1或15
过双曲线的右焦点作圆的切线(切点为),交轴于点,若为线段的中点,则双曲线的离心率为( )
A. B. C. 2 D.