ÌâÄ¿ÄÚÈÝ
£¨2010•½ËÕ¶þÄ££©ÈçͼÊÇÒ»¿é³¤·½ÐÎÇøÓòABCD£¬AD=2£¨km£©£¬AB=1£¨km£©£®ÔÚ±ßADµÄÖеãO´¦£¬ÓÐÒ»¸ö¿Éת¶¯µÄ̽Õյƣ¬ÆäÕÕÉä½Ç¡ÏEOFʼÖÕΪ
£¬Éè¡ÏAOE=¦Á£¨0¡Ü¦Á¡Ü
£©£¬Ì½ÕÕµÆOÕÕÉäÔÚ³¤·½ÐÎABCDÄÚ²¿ÇøÓòµÄÃæ»ýΪS£®
£¨1£©µ±0¡Ü¦Á£¼
ʱ£¬Ð´³öS¹ØÓÚ¦ÁµÄº¯Êý±í´ïʽ£»
£¨2£©µ±0¡Ü¦Á¡Ü
ʱ£¬ÇóSµÄ×î´óÖµ£®
£¨3£©Èô̽ÕÕµÆÿ9·ÖÖÓÐýת¡°Ò»¸öÀ´»Ø¡±£¨OE×ÔOAתµ½OC£¬Ôٻص½OA£¬³Æ¡°Ò»¸öÀ´»Ø¡±£¬ºöÂÔOEÔÚOA¼°OC·´ÏòÐýתʱËùÓÃʱ¼ä£©£¬ÇÒת¶¯µÄ½ÇËٶȴóСһ¶¨£¬ÉèAB±ßÉÏÓÐÒ»µãG£¬ÇÒ¡ÏAOG=
£¬ÇóµãGÔÚ¡°Ò»¸öÀ´»Ø¡±ÖУ¬±»ÕÕµ½µÄʱ¼ä£®
¦Ð |
4 |
3¦Ð |
4 |
£¨1£©µ±0¡Ü¦Á£¼
¦Ð |
2 |
£¨2£©µ±0¡Ü¦Á¡Ü
¦Ð |
4 |
£¨3£©Èô̽ÕÕµÆÿ9·ÖÖÓÐýת¡°Ò»¸öÀ´»Ø¡±£¨OE×ÔOAתµ½OC£¬Ôٻص½OA£¬³Æ¡°Ò»¸öÀ´»Ø¡±£¬ºöÂÔOEÔÚOA¼°OC·´ÏòÐýתʱËùÓÃʱ¼ä£©£¬ÇÒת¶¯µÄ½ÇËٶȴóСһ¶¨£¬ÉèAB±ßÉÏÓÐÒ»µãG£¬ÇÒ¡ÏAOG=
¦Ð |
6 |
·ÖÎö£º£¨1£©¹ýO×÷OH¡ÍBC£¬HΪ´¹×㣬ÌÖÂÛ¦ÁµÄ·¶Î§£¬µ±0¡Ü¦Á¡Ü
ʱ£¬EÔÚ±ßABÉÏ£¬FÔÚÏ߶ÎBHÉÏ£¬¸ù¾ÝS=SÕý·½ÐÎOABH-S¡÷OAE-S¡÷OHF£¬µ±
£¼¦Á£¼
ʱ£¬EÔÚÏ߶ÎBHÉÏ£¬FÔÚÏ߶ÎCHÉÏ£¬S=S¡÷OEF£®
£¨2£©µ±0¡Ü¦Á¡Ü
ʱ£¬ÀûÓûù±¾²»µÈʽÇó³öSµÄ×î´óÖµ£¬×¢ÒâµÈºÅ³ÉÁ¢µÄÌõ¼þ£»
£¨3£©ÔÚ¡°Ò»¸öÀ´»Ø¡±ÖУ¬Çó³öOE¹²×ª¶¯µÄ½Ç¶È£¬ÆäÖеãG±»ÕÕµ½Ê±£¬¹²×ªµÄ½Ç¶È£¬´Ó¶ø¿ÉÇó³ö¡°Ò»¸öÀ´»Ø¡±ÖУ¬µãG±»ÕÕµ½µÄʱ¼ä£®
¦Ð |
4 |
¦Ð |
4 |
¦Ð |
2 |
£¨2£©µ±0¡Ü¦Á¡Ü
¦Ð |
4 |
£¨3£©ÔÚ¡°Ò»¸öÀ´»Ø¡±ÖУ¬Çó³öOE¹²×ª¶¯µÄ½Ç¶È£¬ÆäÖеãG±»ÕÕµ½Ê±£¬¹²×ªµÄ½Ç¶È£¬´Ó¶ø¿ÉÇó³ö¡°Ò»¸öÀ´»Ø¡±ÖУ¬µãG±»ÕÕµ½µÄʱ¼ä£®
½â´ð£º½â£º£¨1£©¹ýO×÷OH¡ÍBC£¬HΪ´¹×㣮
¢Ùµ±0¡Ü¦Á¡Ü
ʱ£¬
EÔÚ±ßABÉÏ£¬FÔÚÏ߶ÎBHÉÏ£¨Èçͼ¢Ù£©£¬
´Ëʱ£¬AE=tan¦Á£¬FH=tan(
-¦Á)£¬¡£¨2·Ö£©
¡àS=SÕý·½ÐÎOABH-S¡÷OAE-S¡÷OHF
=1-
tan¦Á-
tan(
-¦Á)£® ¡£¨4·Ö£©
¢Úµ±
£¼¦Á£¼
ʱ£¬
EÔÚÏ߶ÎBHÉÏ£¬FÔÚÏ߶ÎCHÉÏ£¨Èçͼ¢Ú£©£¬
´Ëʱ£¬EH=
£¬FH=
£¬¡£¨6·Ö£©
¡àEF=
+
£®
¡àS=S¡÷OEF=
(
+
)£®
×ÛÉÏËùÊö£¬S=
¡£¨8·Ö£©
£¨2£©µ±0¡Ü¦Á¡Ü
ʱ£¬S=1-
tan¦Á-
tan(
-¦Á)£¬
¼´S=2-
(1+tan¦Á+
)£® ¡£¨10·Ö£©
¡ß0¡Ü¦Á¡Ü
£¬¡à0¡Ütan¦Á¡Ü1£®¼´1¡Ü1+tan¦Á¡Ü2£®
¡à1+tan¦Á+
¡Ý2
£®
¡àS¡Ü2-
£®
µ±tan¦Á=
-1ʱ£¬SÈ¡µÃ×î´óֵΪ2-
£® ¡£¨12·Ö£©
£¨3£©ÔÚ¡°Ò»¸öÀ´»Ø¡±ÖУ¬OE¹²×ªÁË2¡Á
=
£®
ÆäÖеãG±»ÕÕµ½Ê±£¬¹²×ªÁË2¡Á
=
£® ¡£¨14·Ö£©
Ôò¡°Ò»¸öÀ´»Ø¡±ÖУ¬µãG±»ÕÕµ½µÄʱ¼äΪ9¡Á
=2£¨·ÖÖÓ£©£®¡£¨16·Ö£©
¢Ùµ±0¡Ü¦Á¡Ü
¦Ð |
4 |
EÔÚ±ßABÉÏ£¬FÔÚÏ߶ÎBHÉÏ£¨Èçͼ¢Ù£©£¬
´Ëʱ£¬AE=tan¦Á£¬FH=tan(
¦Ð |
4 |
¡àS=SÕý·½ÐÎOABH-S¡÷OAE-S¡÷OHF
=1-
1 |
2 |
1 |
2 |
¦Ð |
4 |
¢Úµ±
¦Ð |
4 |
¦Ð |
2 |
EÔÚÏ߶ÎBHÉÏ£¬FÔÚÏ߶ÎCHÉÏ£¨Èçͼ¢Ú£©£¬
´Ëʱ£¬EH=
1 |
tan¦Á |
1 | ||
tan(
|
¡àEF=
1 |
tan¦Á |
1 | ||
tan(
|
¡àS=S¡÷OEF=
1 |
2 |
1 |
tan¦Á |
1 | ||
tan(
|
×ÛÉÏËùÊö£¬S=
|
£¨2£©µ±0¡Ü¦Á¡Ü
¦Ð |
4 |
1 |
2 |
1 |
2 |
¦Ð |
4 |
¼´S=2-
1 |
2 |
2 |
1+tan¦Á |
¡ß0¡Ü¦Á¡Ü
¦Ð |
4 |
¡à1+tan¦Á+
2 |
1+tan¦Á |
2 |
¡àS¡Ü2-
2 |
µ±tan¦Á=
2 |
2 |
£¨3£©ÔÚ¡°Ò»¸öÀ´»Ø¡±ÖУ¬OE¹²×ªÁË2¡Á
3¦Ð |
4 |
3¦Ð |
2 |
ÆäÖеãG±»ÕÕµ½Ê±£¬¹²×ªÁË2¡Á
¦Ð |
6 |
¦Ð |
3 |
Ôò¡°Ò»¸öÀ´»Ø¡±ÖУ¬µãG±»ÕÕµ½µÄʱ¼äΪ9¡Á
| ||
|
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁ˽âÈý½ÇÐÎÔÚʵ¼ÊÎÊÌâÖеÄÓ¦Óã¬Í¬Ê±¿¼²éÁËÀûÓûù±¾²»µÈʽÇó×îÖµÎÊÌ⣬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿