题目内容

已知数列数列{an}前n项和Sn=-
1
2
n2+kn
(其中k∈N*),且Sn的最大值为8.
(Ⅰ)确定常数k并求{an}的通项公式;
(Ⅱ)若bn=9-2an,求数列{
1
bnbn+1
}
前n项和Tn
分析:(Ⅰ)根据二次函数的性质及k∈N*可求得Sn的最大值,令其为8,可求得k值,再根据an=
S1,n=1
Sn-Sn-1,n≥2
可求得an,注意验证n=1时情况;
(Ⅱ)由(Ⅰ)易求bn,利用裂项相消法即可求得Tn
解答:解:(Ⅰ)Sn=-
1
2
n2+kn
=-
1
2
(n-k)2+
1
2
k2

又k∈N*,所以当n=k时Sn取得最大值为
1
2
k2
=8,解得k=4,
Sn=-
1
2
n2+4n

当n≥2时,an=Sn-Sn-1=(-
1
2
n2
+4n)-[-
1
2
(n-1)2+4(n-1)]=-n+
9
2

当n=1时,a1=-
1
2
+4=
7
2
,适合上式,
综上,an=-n+
9
2

(Ⅱ)由(Ⅰ)得,bn=9-2an=9-2(-n+
9
2
)=2n,
所以
1
bnbn+1
=
1
2n(2n+2)
=
1
4
(
1
n
-
1
n+1
)

Tn=
1
b1b2
+
1
b2b3
+…+
1
bnbn+1
=
1
4
(1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
)
=
1
4
(1-
1
n+1
)
=
n
4(n+1)

所以数列{
1
bnbn+1
}
前n项和Tn
n
4(n+1)
点评:本题考查等差数列的通项公式及数列求和,考查利用裂项相消法对数列求和,若{{an}为等差数列,公差为d,d≠0,则{
1
anan+1
}的前n项和可用列项相消法,其中
1
anan+1
=
1
d
1
an
-
1
an+1
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网