题目内容
已知偶函数满足:当时,,当时,(1) 求当时,的表达式;(2) 试讨论:当实数满足什么条件时,函数有4个零点,且这4个零点从小到大依次构成等差数列.
(1) (2)见解析
解析
(本小题12分)已知函数,(Ⅰ)分别求出、、、的值;(Ⅱ)根据(Ⅰ)中所求得的结果,请写出与之间的等式关系,并证明这个等式关系;(Ⅲ)根据(Ⅱ)中总结的等式关系,请计算表达式的值.
(本题满分12分)设函数(,为常数),且方程有两个实根为.(1)求的解析式;(2)证明:曲线的图像是一个中心对称图形,并求其对称中心.
设 x1、x2()是函数 ()的两个极值点.(I)若 ,,求函数 的解析式;(II)若 ,求 b 的最大值;
已知的定义域为,且恒有等式对任意的实数成立.(Ⅰ)试求的解析式;(Ⅱ)讨论在上的单调性,并用单调性定义予以证明.
设.(1)若在上的最大值是,求的值; (2)若对于任意,总存在,使得成立,求的取值范围; (3)若在上有解,求的取值范围.
已知a>0且a≠1,。(1)判断函数f(x)是否有零点,若有求出零点;(2)判断函数f(x)的奇偶性;(3)讨论f(x)的单调性并用单调性定义证明。
定义在R上的增函数y=f(x)对任意x,y∈R都有f(x+y)=f(x)+f(y).(Ⅰ)求f(0)(Ⅱ)求证f(x)为奇函数;(Ⅲ)若f()+f(3-9-2)<0对任意x∈R恒成立,求实数k的取值范围.
(本小题满分12分)函数f(x)=loga(x2-4ax+3a2), 0<a<1, 当x∈[a+2,a+3]时,恒有|f(x)|≤1,试确定a的取值范围.