题目内容
已知Sn是正项数列{an}的前n项和,且Sn=
+
an-
(1)求数列{an}的通项公式;
(2)若an=2nbn,求数列{bn}的前n项和;
(3)数列{kn}满足kn+1=3kn-1,k1=1,当n≥2时证明:
+
+
+…+
<
.
1 |
4 |
a | 2 n |
1 |
2 |
3 |
4 |
(1)求数列{an}的通项公式;
(2)若an=2nbn,求数列{bn}的前n项和;
(3)数列{kn}满足kn+1=3kn-1,k1=1,当n≥2时证明:
a1 |
2k2-2 |
a2 |
2k3-2 |
a3 |
2k4-2 |
an-1 |
2kn-2 |
8 |
3 |
分析:(1)再写一式,两式相减,可得an-an-1=2,从而可求数列的通项公式;
(2)确定数列的通项,利用错位相减法,可求数列{bn}的前n项和;
(3)先用数学归纳法证明当n≥3时,3n-1>2n,然后用错位相减法计算,可得结论.
(2)确定数列的通项,利用错位相减法,可求数列{bn}的前n项和;
(3)先用数学归纳法证明当n≥3时,3n-1>2n,然后用错位相减法计算,可得结论.
解答:(1)解:∵Sn=
+
an-
,Sn-1=
an-12+
an-1-
,
∴an=Sn-Sn-1=
(an2-an-12)+
(an-an-1)
∵正项数列{an},∴an-an-1=2,
∵S1=
+
a1-
,
∴a1=3,∴an=2n+1;
(2)解:∵an=2nbn,∴bn=
∴Tn=
+
+…+
①
∴
Tn=
+
+…+
②
①-②整理可得Tn=5-(2n+5)
;
(3)证明:①当n=3时,33-1>2•3;
②设n=k(k≥3)时,3k-1>2k,则n=k+1时,3k=3•3k-1>6k>2(k+1)
∴n=k+1时,结论成立,
∴3n-1>2n,即
<
所以
+
+…+
<
+
+…+
令Sn′=
+
+…+
,则
Sn′=
+
+…+
两式相减可得
Sn′=
+
+…+
-
=
-
∴Sn′=
-
∴
+
+…+
<
∵
=
∴
+
+
+…+
<
得证.
1 |
4 |
a | 2 n |
1 |
2 |
3 |
4 |
1 |
4 |
1 |
2 |
3 |
4 |
∴an=Sn-Sn-1=
1 |
4 |
1 |
2 |
∵正项数列{an},∴an-an-1=2,
∵S1=
1 |
4 |
a | 2 1 |
1 |
2 |
3 |
4 |
∴a1=3,∴an=2n+1;
(2)解:∵an=2nbn,∴bn=
2n+1 |
2n |
∴Tn=
3 |
2 |
5 |
22 |
2n+1 |
2n |
∴
1 |
2 |
3 |
22 |
5 |
23 |
2n+1 |
2n+1 |
①-②整理可得Tn=5-(2n+5)
1 |
2n |
(3)证明:①当n=3时,33-1>2•3;
②设n=k(k≥3)时,3k-1>2k,则n=k+1时,3k=3•3k-1>6k>2(k+1)
∴n=k+1时,结论成立,
∴3n-1>2n,即
2n-1 |
3n-1-1 |
2n |
3n-1 |
所以
a2 |
2k3-2 |
a3 |
2k4-2 |
an-1 |
2kn-2 |
6 |
32 |
8 |
33 |
2n |
3n-1 |
令Sn′=
6 |
32 |
8 |
33 |
2n |
3n-1 |
1 |
3 |
6 |
33 |
8 |
34 |
2n |
3n |
两式相减可得
2 |
3 |
6 |
32 |
2 |
33 |
2 |
3n-1 |
2n |
3n |
7 |
9 |
1 |
3n-1 |
∴Sn′=
7 |
6 |
1 |
2•3n-2 |
∴
6 |
32 |
8 |
33 |
2n |
3n-1 |
7 |
6 |
∵
a1 |
2k2-2 |
3 |
2 |
∴
a1 |
2k2-2 |
a2 |
2k3-2 |
a3 |
2k4-2 |
an-1 |
2kn-2 |
8 |
3 |
点评:本题考查数列的通项与求和,考查数列与不等式的联系,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目
已知Sn是正项数列an的前n项和,且an+
=2Sn,那么an的通项公式为( )
1 |
an |
A、an=
| ||||
B、an=
| ||||
C、an=
| ||||
D、an=
|