题目内容

已知Sn是正项数列{an}的前n项和,且Sn=
1
4
a
2
n
+
1
2
an-
3
4

(1)求数列{an}的通项公式;     
(2)若an=2nbn,求数列{bn}的前n项和;
(3)数列{kn}满足kn+1=3kn-1,k1=1,当n≥2时证明:
a1
2k2-2
+
a2
2k3-2
+
a3
2k4-2
+…+
an-1
2kn-2
8
3
分析:(1)再写一式,两式相减,可得an-an-1=2,从而可求数列的通项公式;
(2)确定数列的通项,利用错位相减法,可求数列{bn}的前n项和;
(3)先用数学归纳法证明当n≥3时,3n-1>2n,然后用错位相减法计算,可得结论.
解答:(1)解:∵Sn=
1
4
a
2
n
+
1
2
an-
3
4
Sn-1=
1
4
an-12+
1
2
an-1-
3
4

an=Sn-Sn-1=
1
4
(an2-an-12)+
1
2
(an-an-1)

∵正项数列{an},∴an-an-1=2,
∵S1=
1
4
a
2
1
+
1
2
a1-
3
4

∴a1=3,∴an=2n+1;
(2)解:∵an=2nbn,∴bn=
2n+1
2n

Tn=
3
2
+
5
22
+…+
2n+1
2n

1
2
Tn=
3
22
+
5
23
+…+
2n+1
2n+1

①-②整理可得Tn=5-(2n+5)
1
2n

(3)证明:①当n=3时,33-1>2•3;
②设n=k(k≥3)时,3k-1>2k,则n=k+1时,3k=3•3k-1>6k>2(k+1)
∴n=k+1时,结论成立,
∴3n-1>2n,即
2n-1
3n-1-1
2n
3n-1

所以
a2
2k3-2
+
a3
2k4-2
+…+
an-1
2kn-2
6
32
+
8
33
+…+
2n
3n-1

令Sn′=
6
32
+
8
33
+…+
2n
3n-1
,则
1
3
Sn′=
6
33
+
8
34
+…+
2n
3n

两式相减可得
2
3
Sn
=
6
32
+
2
33
+…+
2
3n-1
-
2n
3n
=
7
9
-
1
3n-1

Sn′=
7
6
-
1
2•3n-2

6
32
+
8
33
+…+
2n
3n-1
7
6

a1
2k2-2
=
3
2

a1
2k2-2
+
a2
2k3-2
+
a3
2k4-2
+…+
an-1
2kn-2
8
3
得证.
点评:本题考查数列的通项与求和,考查数列与不等式的联系,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网