题目内容
【题目】已知函数f(x)=ex(x﹣b)(b∈R).若存在x∈[ ,2],使得f(x)+xf′(x)>0,则实数b的取值范围是( )
A.(﹣∞, )
B.(﹣∞, )
C.(﹣ , )
D.( ,+∞)
【答案】A
【解析】解:∵f(x)=ex(x﹣b),
∴f′(x)=ex(x﹣b+1),
若存在x∈[ ,2],使得f(x)+xf′(x)>0,
则若存在x∈[ ,2],使得ex(x﹣b)+xex(x﹣b+1)>0,
即存在x∈[ ,2],使得b< 成立,
令g(x)= ,x∈[ ,2],
则g′(x)= >0,
g(x)在[ ,2]递增,
∴g(x)最大值=g(2)= ,
故b< ,
故选:A
【考点精析】掌握利用导数研究函数的单调性是解答本题的根本,需要知道一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.
练习册系列答案
相关题目
【题目】医学上所说的“三高”通常是指血脂增高、血压增高、血糖增高等疾病.为了解“三高”疾病是否与性别有关,医院随机对入院的60人进行了问卷调查,得到了如下的列联表:
(1)请将列联表补充完整;
患三高疾病 | 不患三高疾病 | 合计 | |
男 | 6 | 30 | |
女 | |||
合计 | 36 |
(2)能否在犯错误的概率不超过0.005的前提下认为患“三高”疾病与性别有关? 下列的临界值表供参考:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:K2= .