题目内容

【题目】已知数列{an}满足log3an+1=log3an+1(n∈N*),且a2+a4+a6=9,则 (a5+a7+a9)的值是( )
A.﹣5
B.-
C.5
D.

【答案】A
【解析】解:∵log3an+1=log3an+1
∴an+1=3an
∴数列{an}是以3为公比的等比数列,
∴a2+a4+a6=a2(1+q2+q4)=9
∴a5+a7+a9=a5(1+q2+q4)=a2q3(1+q2+q4)=9×33=35

故选A
【考点精析】本题主要考查了等比数列的基本性质的相关知识点,需要掌握{an}为等比数列,则下标成等差数列的对应项成等比数列;{an}既是等差数列又是等比数列== {an}是各项不为零的常数列才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网